CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI i utbildning: En studie om AI-teknologiers betydelse för studenters lärande och inlärningsmönster
University of Borås, Faculty of Librarianship, Information, Education and IT.
University of Borås, Faculty of Librarianship, Information, Education and IT.
2025 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
AI in Education : A Study on the Significance of AI Technologies for Students' Learning and Learning Patterns (English)
Abstract [sv]

Artificiell intelligens (AI) har blivit en framväxande teknologi inom utbildningssektorn med potential att förändra hur undervisning och lärande bedrivs. Genom användning av AI-verktyg som generativ AI och intelligenta handledningssystem kan undervisning anpassas efter individens behov, vilket möjliggör ett mer personligt samt effektivt lärande. Tekniken erbjuder även lärare stöd i form av automatiserad bedömning och återkoppling. Samtidigt medför AI stora utmaningar, såsom frågor om dataskydd, transparens i beslutsfattande samt risker för minskad mänsklig interaktion i undervisningen. Dessa möjligheter och risker belyser vikten av att förstå hur tekniken kan identifiera och anpassa undervisningen efter studentens inlärningsmönster för att förbättra studenters studieresultat. Studien genomfördes med en mixed-methods ansats, bestående av en litteraturstudie och en enkätundersökning riktad till studenter inom högre utbildning. Litteraturstudien gav en teoretisk grund kring AI i utbildning, medan enkäten samlade in studenters erfarenheter och upplevelser av AI-verktyg i sina studier. Resultaten visar att AI-teknologier såsom Natural Language Processing (NLP), Machine Learning, Deep Learning samt Large Language Models (LLM) är vanligt förekommande och ofta integrerade i verktyg som exempelvis ChatGPT. Dessa används för bearbetning, informationssökning, språkutveckling och för att skapa en ökad förståelse för komplexa begrepp. Respondenterna upplever att verktygen kan bidra till tidsbesparing, struktur samt effektivitet i studierna. Samtidigt framkom risker såsom minskat kritiskt tänkande, ökad risk för plagiat samt en tendens att förlita sig på AI istället för att självständigt analysera och reflektera.

Abstract [en]

Artificial Intelligence (AI) has become an emerging technology in the education sector, with the potential to transform how teaching and learning are conducted. By using AI tools such as generative AI and intelligent tutoring systems, instruction can be tailored to individual needs, enabling more personalized and effective learning. The technology also offers teachers support in the form of automated assessment and feedback. At the same time, AI presents significant challenges, such as issues of data protection, transparency in decision-making, and the risk of reduced human interaction in teaching. These opportunities and risks highlight the importance of understanding how the technology can identify and adapt instruction to students' learning patterns in order to improve student outcomes. The study was conducted using a mixed-methods approach, consisting of a literature review and a survey directed at students in higher education. The literature review provided a theoretical foundation on AI in education, while the survey gathered students’ experiences and perceptions of AI tools in their studies. The results show that AI technologies such as Natural Language Processing (NLP), Machine Learning, Deep Learning, and Large Language Models (LLM) are commonly used and are often integrated into tools such as ChatGPT. These technologies are applied for text processing, information retrieval, language development, and to enhance the understanding of complex concepts. The respondents reported that such tools can contribute to time efficiency, improved structure, and greater effectiveness in their studies. At the same time, risks were identified, including reduced critical thinking, an increased risk of plagiarism, and a tendency to rely on AI instead of engaging in independent analysis and reflection.

Place, publisher, year, edition, pages
2025.
Keywords [en]
AmritaITS, Artificial Intelligence, AI, Generative AI, ChatGPT, Machine Learning, Large Language Model, Deep Learning, Education, Intelligent Tutoring Systems, Students
Keywords [sv]
ChatGPT, AmritaITS, Artificiell intelligens, AI, Generativ AI, Maskininlärning, Stora språkmodeller, Djupinlärning, Utbildning, Intelligenta handledningssystem, Studenter
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:hb:diva-34371OAI: oai:DiVA.org:hb-34371DiVA, id: diva2:2004329
Subject / course
Informatics
Available from: 2025-10-16 Created: 2025-10-07 Last updated: 2025-10-16Bibliographically approved

Open Access in DiVA

2025KANI15(990 kB)84 downloads
File information
File name FULLTEXT01.pdfFile size 990 kBChecksum SHA-512
db023d95ed8103fc7a8e108064c493bb01661b95bbe192521a9849271768e117f41e75a7401cb01725504883e9c6f3e77f7744a9c1d5782c6d3239c8f3b88582
Type fulltextMimetype application/pdf

By organisation
Faculty of Librarianship, Information, Education and IT
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 688 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf