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ABSTRACT 

Decision trees are often used for decision support since they are fast to train, easy to understand and deterministic; i.e., 
always create identical trees from the same training data. This property is, however, only inherent in the actual decision 
tree algorithm, nondeterministic techniques such as genetic programming could very well produce different trees with 
similar accuracy and complexity for each execution.  Clearly, if more than one solution exists, it would be misleading to 
present a single tree to a decision maker. On the other hand, too many alternatives could not be handled manually, and 
would only lead to confusion. Hence, we argue for a method aimed at generating a suitable number of alternative 
decision trees with comparable accuracy and complexity.  When too many alternative trees exist, they are grouped and 
representative accurate solutions are selected from each group. Using domain knowledge, a decision maker could then 
select a single best tree and, if required, be presented with a small set of similar solutions, in order to further improve his 
decisions. In this paper, a method for generating alternative decision trees is suggested and evaluated. All in all,four 
different techniques for selecting accurate representative trees from groups of similar solutions are presented. 
Experiments on 19 UCI data sets show that it often exist dozens of alternative trees, and that one of the evaluated 
techniques clearly outperforms all others for selecting accurate and representative models. 
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1. INTRODUCTION 

Decision support systems based on predictive modeling are today a crucial part of many organizations since 
data often is collected in amounts and with a complexity that exceed the capabilities of human decision 
makers. Even if accuracy normally is the main goal for predictive modeling Goodwin (2002) states that most 
decision makers would require at least a basic understanding of a predictive model to use it for decision 
support. Furthermore, Domingos (1977) points out that comprehensibility is important since it facilitates the 
process of interactive refinement that is at the heart of most successful applications. 

One of the most popular techniques creating comprehensible models is decision trees algorithms such as 
C4.5 (Quinlan 1986). Decision trees are popular since they are fast to train and easy to understand. However, 
the trees still need to have a reasonable size to be considered comprehensible. Curruble et al. (1995) suggest 
that it becomes nearly impossible to get a global idea of a model if it consists of more than one or two dozens 
of rules.  

A well known deficiency present in most decision trees algorithms is that they are unstable; i.e., slight 
variations in the training data can result in quite different attribute selections in the splits, see e.g., (Roiger & 
Geatz 2003). The problem then, of course, becomes which decision tree that should be trusted if small 
variations in the data will produce very different trees. Turney (1995) gives an example where engineers are 
disturbed and lose confidence in the decision trees when different batches of data from the same process 
result in radically different trees. 

According to Dietterich (1996), the most fundamental source of instability is that the hypothesis space is 
too large. If an algorithm searches a very large hypothesis space and outputs a single hypothesis, then in the 
absence of huge amounts of training data, the algorithm will need to make many more or less arbitrary 
decisions, decisions which might be different if the training set were only slightly modified. This is called 
informational instability, instability caused by the lack of information.  
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This informational instability is for example often experienced in the medical domain, where datasets 
often contain small number of instances (sometimes 100 or less) but still relatively large number of features. 
In such cases (large spaces with sparse samples) it is quite likely that different logical expressions may 
accidently classify some data well, thus many data mining systems may find solutions which are precise but 
not meaningful according to experts; see e.g., (Grąbczewski & Duch 2002). 

One approach to handle this problem is to instead benefit from the instability by creating a diverse 
ensemble of models using, for instance bagging (Breiman 1996) or boosting (Schapire 1990). However, even 
if these types of ensemble techniques most often are more accurate and stable in their predictions, they are 
not comprehensible since a large number of models would need to be interpreted to understand a prediction.  

Another approach is taken by Grąbczewski & Duch (2002), who point out that many sets of rules with 
similar complexity and accuracy may exist, using for example different feature subsets, bringing more 
information of interest to the domain expert. Providing experts with several alternative descriptions make it 
easier for the experts to find interesting explanations compatible with their experience, and may lead to a 
better understanding of the problem. Consequently, data mining methods aimed at finding several different 
descriptions of the same relationship,  are potentially valuable, and deserve investigation.  

The approach of providing experts with alternative solutions is also supported by, for instance, Plish 
(1998), who notes that modern support systems for group decisions in situational centers largely depends on 
the availability of a procedure that generates "reasonable" (nearly optimal) alternative decisions in real time. 
If more than one solution exists, it would actually be misleading to present a single solution to a decision 
maker.  

Following the argumentation above, this study will present a method for generating alternative solutions 
which all have comparable accuracy and complexity. Since too many alternatives risk to confuse a decision 
maker, the method also guides an expert among a large set of alternative solutions. In more detail, the 
suggested method first groups similar solutions and then selects accurate representative solutions from each 
group. Using domain knowledge, a decision maker could then select the best tree from only a few 
representative solutions. Finally, the decision maker could also request a small set of similar solutions to 
further improve his understanding of the relationship.  

A solutions in the context of decision making could be any form, but this study only consider decision 
trees since they are one of the most popular machine learning techniques used for decision support. Solution 
and decision tree are used interchangeably in the rest of this paper. 

2. RELATED WORK 

The following section will first describe some techniques for creating alternative solutions. In the last section 
different approaches for selecting a single model from several models will be discussed.  

2.1 Generating Alternative Solutions 

A straightforward and frequently used way of generating different solutions for a certain data set is to train 
different models on different parts of the training data. Since most machine learning techniques are instable, 
this will result in different solutions. Bagging is a well know example of this technique. In bagging, a new 
bootstrap training set is created for each model by randomly selecting instances (with replacement) from the 
original training set.  

As mentioned above Pilsh (1998) acknowledge the importance of supplying alternative solutions to a 
decision maker. Pilsh also suggest an algorithm for generating alternative solutions for a multi-criterion 
linear programming model. Alternative solutions are generated by slightly altering either the objective or the 
constraints, and then solving the resulting problem with the help of supplementary constraints. Structural 
changes are also considered, but the algorithm is limited to multi-criterion linear problems, and cannot be 
applied to decision trees. 

An algorithm for generating alternative decision trees is presented by Grąbczewski & Duch (2002), who 
use a variant of standard beam search to create heterogeneous forests of decision trees. The number of 
possible alternative solutions is restricted to the beam size. To create a forest, all trees that are found during 
the search are ordered according to their accuracy, estimated on validation set. An infinite beam size 
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corresponds to a breadth first search, which is unpractical for most problems. Grąbczewski & Duch report 
that their algorithm finds several good alternative solutions for three UCI (Blake & Mertz 1998) data sets. 
However, it is somewhat unclear exactly how the solutions were evaluated, and the number of alternative 
solutions that were found is not reported.  

Li & Lui (2003) present a simple method for creating ensembles called cascading trees. First all features 
are ranked according to their gain ratio. Next trees are created in a cascading manner where the root node of 
the i th tree corresponds to the i th ranked features; the rest of the tree is created as normal. The authors stress 
the fact that unlike bagging or boosting, cascading trees do not in any way modify the original data. This is of 
a critical concern in, for instance, bio-medical applications such as the understanding and diagnosis of a 
disease, where it is important that all training instances are classified correctly. The method is evaluated on 
two medical related dataset using 10-fold cross-validation. Several trees that could classify the training data 
without error were found for all folds. An interesting observation, made by the authors, is that the tree with 
the best test accuracy often did not have the feature with the highest gain ratio in its root.  

It should be noted that ensemble creation techniques often create base classifiers by sacrificing accuracy 
for diversity. Ensemble members are usually less accurate than single model while the ensemble is more 
accurate. Hence, most ensemble methods are not suitable for creating several alternative standalone solutions. 

In a previous study (Johansson et. al. 2010) we used GP to generate alternative models based on all data. 
Since GP is inherently inconsistent, no data needs to be scarified or modified to achieve alternative solutions. 
Several alternative trees where found and most trees were more accurate than a single decision tree created 
using CART (Breiman 1984).  

2.2 Selecting Solutions 

The most straightforward approach to selecting a single model from several alternative models, is of course, 
to compare all models and pick the n having the highest accuracy on either training data or on an additional 
(validation) data set. In this study however the starting point is models which all have comparable training 
accuracy which could complicate selection based on training accuracy.  

Holding out a validation set is still applicable but previous work such as (Johansson et. al. 2010), has 
shown that even if a validation set is useful for selecting models, it also lowers the accuracy for the generated 
model since all data is not available for training. Again, the use of all available data for the actual modeling is 
especially important for data sets with relatively few instances to start with. Hence, selection based on 
validation accuracy will not be considered in this study. 

A different approach is to select the n trees with the highest gain ratio, but as seen in the work of Li & Liu 
(2003) this does not yield very promising result.  

In our previous study (Johansson et al. 2010), one tree was selected from a group of trees based on 
ensemble fidelity. The method used the fact that an ensemble of models most often is better than its 
individual members.  First alternative trees were created from all training data using GP and all available 
training data. Next an imaginary ensemble was created from the evaluated models and used to generate 
predictions for both training and test instances. Finally, the predictions of each model were compared to the 
ensemble prediction and the model that was most faithful (in making the same predictions) was selected.  

In the field of semi-supervised learning, this is referred to as coaching. Ensemble predictions could be 
produced even for the test instances, as long as the problem is one where predictions are made for sets of 
instances, rather than one instance at a time. Fortunately, in most real-world data mining projects, bulk 
predictions are made, and there is no shortage of unlabeled instances. Experiments using tenfold cross 
validation on 25 UCI data sets clearly showed that it is better to select models based on the fidelity against 
the imaginary ensemble than to use training or validation accuracy.  

3. METHOD 

In this study we argue that alternative solutions may enrich a decision making situation. However, in the 
same way that complex decision trees become hard to comprehend, a large number of alternative solutions 
will also reduce the benefit of alternative solutions. Simply put, decision makers cannot interpret and 
evaluate dozens of trees, so there is a need for automatic strategies for selecting a subset of accurate trees.  
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We define an alternative solution as a decision tree that is of the same size or smaller than the original 
solution, while having equal or better training accuracy. Furthermore, an alternative decision tree should 
classify the data with a unique partitioning of the training instances, i.e., to be an alternative the solution 
needs to base its decision on different facts. It should be noted that two decision trees can classify the data in 
exactly the same way, but still partitioning the instances differently.  

In this paper the original solution is represented by a decision tree created using the J48 algorithm in the 
WEKA (Witten & Frank 2005) workbench. 

Naturally, the numbers of alternative solutions are dependent on the size of the tree, i.e. the number of 
splits, in the original tree and the number of possible attribute values in the data set. A split is a combination 
of an attribute, an operator and a value which creates a partition of the data set. In the experiments, (and in 
most decision tree algorithms), only relevant splits are considered, since the aim is to present truly alternative 
solutions. Relevant splits for an attribute is the splits that are needed to divide the data set into pure and 
unpure partitions. A pure partition is a set of instances of the same target class. 

For an original tree with n splits and a dataset with r relevant splits there are nr possible solutions. Of 
these solutions, only the ones with equal or higher accuracy are considered to be alternative solutions. 
Furthermore, if several alternative trees partition the data set in the same way, only the smallest tree is 
considered to be an alternative solution. Since the number of possible solutions is related to the size of the 
original solution, trees of the same size must be evaluated for all data sets.  

3.1 Creation of Original Trees 

Since the pruning in J48 does not support creation of trees of a certain size, the algorithm cannot be used in 
its original form. Instead a very large J48 tree is first created by setting the confidence factor to 0.5, (higher 
values yields warnings in WEKA). Next, the tree is pruned to a certain size in the following manner: 

1. CUT_DEPTH is set to MAX_SIZE 
2. All branches are cut at CUT_DEPTH and replaced with leaf node predicting the majority class of 

the training instance reaching the new leaf. 
3. Redundant leaves are removed, i.e. if both leaves of any root split are predicting the same class the 

split is replaced by one of the leaves. This is done recursively since replacing a split can result in new 
redundancy higher up in the tree. 

4. If the tree SIZE > MAX_ SIZE then CUT_DEPTH is set to = CUT_DEPTH-1. Return to 2. 
Even if this pruning algorithm does not guarantee an exact size of the final tree, it is much more 

consistent than J48 original pruning algorithm. 

3.2 Creation of Alternative Solutions 

To be able to generate alternative solutions, a method needs to guarantee that the solutions have a certain 
training accuracy, a certain size and partition the data set in a unique way. None of the techniques discussed 
in the related work fulfill all three requirements.  

Our approach is based on GP and continuously evolves a population of decision trees. If any of the trees 
in the population meets the requirement for being an alternative tree (accuracy, size and uniqueness) they are 
put in a growing list of alternative solutions. If two trees partition the dataset in the same way, only the 
smallest tree is kept in the list. To always drive the evolution towards new alternative solutions, a fitness 
function based on three metrics is used:  

• A reward based on accuracy 
• A punishment in relation to the tree size which increases if a tree is bigger than the original tree 
• A punishment in relation to how similar the tree is to other alternative solutions. 
Similarity is calculated by counting the number of identical splits that occurs in the same position in both 

trees. To ensure that each tree makes a unique partition of the data set, the GP is only allowed to search 
among relevant splits. If all splits are relevant, and the tree is not a copy of another tree, it will partition the 
data in a unique way. 

The GP used in the experiments are more or less vanilla GP using tournament selection. A difference is 
that only two trees are selected for each tournament to slow down the convergence of the population. The 
idea is to look for more alternative trees in the neighborhood of discovered solutions. Another important 
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difference from standard GP is that five batches are used in the experiments. A batch always starts from a 
new randomly generated population, but the list of alternative trees is kept during all batches. In this way, 
each population can start to look for solutions in new directions, even if a previous batch has converged to a 
certain solution. 

Finally the trees are grouped based on their root split, putting all trees that start with the same split in the 
same group. 

3.3 Selection of Representative Trees 

As described in the related work, there are several ways of selecting a single tree from a group of trees. This 
study will evaluate four different techniques random, training accuracy, ensemble fidelity and similarity.  
Random selects a tree randomly and will be estimated by calculating the average accuracy of all trees. The 
other three techniques select one tree from each group of solutions. Training accuracy selects the tree with 
the highest training accuracy from each group. Ensemble fidelity is based on (Johansson et al. 2010)  
coaching technique and uses all solutions as an ensemble. The difference is that instead of selecting only one 
tree, the tree that is most faithful to the ensemble’s test prediction is selected from each group. Finally, 
similarity selects the trees that have most in common with the other trees in the same group. The idea is that 
important splits will be used more often and hence the tree that has most in common with the other group 
members should contain more important splits.    

4. EXPERIMENTS 

The experiments are divided in three main stages, i.e., generation of alternative solutions, selection of 
representative trees and tree evaluation. All selection strategies were evaluated on the same groups of 
alternative solutions. It should be noted that only groups with three or more members were counted and 
evaluated in the experiments since simlilarity has no meaning for two trees. All experiments were performed 
on 19 data sets from the UCI–machine learning repository using 10-fold cross-validation with stratification. 

In the experiments, J48 trees were created with 3, 5 and 7 splits. The values 3 and 7 were selected since 
they correspond to balanced trees. Trees of these sizes may seem small and simple but as pointed out by 
(Holte 1993), simple classification rules perform well for most common problems. Hence, small trees are a 
good starting point for a decision support system. 

The GP process was implemented in G-REX, our publicly available GP-framework (König et al. 2008).   
In the experiments, a batch consisted of a population of 300 individual that were evolved during 100 
generations with a crossover probability of 0.8 and a mutation probability of 0.001. 

5. RESULTS 

The result of the first experiments which concerns creation of alternative solutions is presented in Table 1 
below.  #Inst is the number of instances in the data set and #Splits is the number of relevant splits that each 
data set contains. Size is the actual size of the J48 tree after the second phase of pruning has been performed. 
The average number of alternative trees and groups (for ten folds) are presented for each of the evaluated tree 
sizes 3,5,7 splits (3S, 5S, 7S).  

As seen in the table, a large amount of alternative solutions could be found for all target tree sizes. As 
could be expected, a larger tree size results in more alternative solutions. Ten or less alternative solutions 
could only be found for some data sets, i.e. seven for 3S, four for 5S and one for 7S. The average number of 
solutions (81.5, 103.5 and 173.9) is obviously too large for a decision maker to handle manually.  

Another interesting result is that when larger trees are allowed, fewer groups of similar trees are found, in 
spite of an increasing number of solutions.  
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Table 1. Number of Solutions, Groups and average ACC 

Data set #Inst. #Splits 
Size #Trees #Groups 

3S 5S 7S 3S 5S 7S 3S 5S 7S 

Breast-cancer 286 32 2.6 4.2 6.1 64.3 90.3 159.9 6.7 5.4 3.6 

Breast-w 699 74 2.0 5.0 5.3 113.0 325.4 302.4 12.2 13.8 12.9 

Colic 368 311 2.0 3.5 5.7 4.6 24.7 95.7 0.0 0.8 2.5 

C.-Lenses 24 4 2.9 2.9 2.9 8.2 7.4 7.4 1.6 1.4 1.3 

Credit-a 690 860 2.5 4.0 6.0 26.0 106.8 237.2 1.9 3.4 2.7 

Cylinderbands 540 1211 2.8 4.4 6.9 218.4 249.2 420.5 13.7 9.3 6.3 

Diabetes 768 919 2.5 3.0 4.4 5.2 29.0 13.4 0.5 2.1 0.6 

Glass 214 739 2.8 4.8 5.6 427.4 15.5 22.9 28.9 1.7 1.2 

Haberman 306 80 2.4 3.9 6.4 142.5 324.0 551.9 12.1 17.2 20.1 

Heart-c 303 316 2.6 4.5 5.5 76.9 17.3 34.1 3.5 2.0 2.1 

Heart-Statlog 270 300 1.8 4.5 5.4 9.7 43.1 30.5 1.0 1.2 1.4 

Hepatitis 155 201 1.9 3.6 5.3 19.0 145.9 280.2 1.6 6.1 6.5 

Iris 150 59 2.9 3.8 3.8 28.5 21.8 23.8 4.5 2.7 3.2 

Liver-disorder 345 274 2.1 4.6 5.6 66.7 106.2 88.1 5.8 7.6 3.8 

Lymph 148 40 2.2 4.5 5.4 155.8 292.2 284.9 19.3 8.4 6.4 

TAE 151 87 2.7 2.9 6.3 176.4 164.1 648.9 17.1 15.7 12.1 

Tic-tac-toe 958 18 1.2 1.2 6.0 1.1 1.1 72.7 0.0 0.0 2.5 

Wine 178 772 2.9 4.2 4.5 4.2 1.4 12.7 0.4 0.1 0.7 

ZOO 101 96 3.0 5.0 6.8 2.7 1.9 16.4 0.1 0.2 0.7 

MEAN 350 336 2.4 3.9 5.5 81.6 103.5 173.9 6.9 5.2 4.8 
 
It should be noted that an alternative solutions is dependent on both the J48 size and accuracy. Hence, 

Table 2 below presents average test accuracy (acc) for each data set, tree size, number of alternative trees and 
groups with more than three trees. As could be expected, a larger J48 tree is more accurate than a smaller 
tree. It is, however, surprising that even if the accuracy increases, the possible number of solutions also 
increases. Of course a larger tree facilitates more combinations of the splits, but the search for an accurate 
tree also becomes harder since there are more trees to search among and less trees that actually have the 
required accuracy. Table 2 also shows that a possible explanation to the decreasing number of groups is 
increasing tree accuracy.  

Table 2. Size and acc vs. #trees and #groups 

  Size J48 acc Rnd acc #trees #Groups 

3S 2.4 73.5 75.1 81.6 6.9 

5S 3.9 76.5 77.5 103.5 5.2 

7S 5.5 76.6 78.2 173.9 4.8 
 
The test accuracies for all selection techniques are presented in Table 3 where Rnd is the average 

accuracy of all alternative solutions, which represents selecting a tree at random.  Trn, Ens and Str are the 
average accuracies for selecting a single solution from each group of solutions. Trn selects a solutions from 
the group based on training accuracy, Ens uses ensemble fidelity as described above and Sim selects solutions 
that is most similar (in terms of splits) to the other trees in the group. For each data set and tree size the best 
result is marked with bold numbers. 
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Table 3. Accuracy 

3S 5S 7S 
Data set J48 Rnd Trn Ens Sim J48 Rnd Trn Ens Sim J48 Rnd Trn Ens Sim 

Breast-cancer 70.7 72.4 73.0 73.0 72.7 71.0 72.6 73.0 73.3 73.2 70.7 72.1 71.7 73.5 71.9 

Breast-w 92.9 93.7 94.6 95.0 94.3 94.4 95.0 95.3 95.4 95.1 94.6 95.1 95.4 95.4 95.4 
Colic 83.7 85.2 85.9 85.9 83.7 84.5 85.1 84.9 85.3 85.1 85.1 85.0 84.4 85.0 85.1 
C.-Lenses 75.0 77.6 75.0 78.3 75.0 75.0 78.0 75.0 81.7 75.0 75.0 77.9 75.0 78.3 78.3 
Credit-a 85.7 85.2 84.4 85.0 85.0 84.1 84.8 84.4 84.7 84.3 84.3 84.8 84.8 84.6 84.6 

Cylinderbands 66.3 67.4 68.0 68.5 68.1 68.0 69.2 69.5 69.8 69.0 70.9 68.9 68.4 70.0 69.0 

Diabetes 74.3 74.4 74.0 74.4 74.3 74.5 74.9 75.1 74.9 74.9 74.6 74.4 74.3 74.4 74.1 

Glass 47.2 53.4 56.5 55.9 53.3 64.0 65.0 65.7 65.7 65.7 64.5 64.1 63.9 64.8 63.4 

Haberman 68.3 72.4 72.2 72.5 72.1 69.0 72.1 72.9 73.1 72.2 67.7 72.5 72.2 72.7 72.3 
Heart-c 75.2 74.4 74.0 75.3 74.9 78.2 79.9 79.9 79.7 80.0 77.2 80.8 81.0 81.3 80.7 

Heart-Statlog 72.2 70.5 70.8 71.4 71.3 76.3 78.5 79.6 78.8 78.8 77.4 80.4 79.7 81.9 79.8 

Hepatitis 80.1 78.8 78.3 78.2 77.7 78.8 81.3 82.2 81.9 81.6 76.2 77.9 78.2 78.5 78.5 
Iris 94.7 95.0 94.9 95.2 94.8 94.0 95.2 95.3 95.0 95.2 94.0 95.4 94.7 94.8 94.9 
Liver-disorder 64.4 66.5 66.5 67.2 66.2 65.0 64.4 65.2 64.7 65.0 65.5 64.5 63.7 64.5 63.6 

Lymph 59.5 69.0 72.3 72.4 67.5 78.3 75.6 75.5 77.3 75.1 75.0 76.5 74.9 76.8 75.5 

TAE 45.8 49.1 51.6 54.0 48.8 46.5 49.6 51.1 53.0 49.6 48.5 54.7 54.5 55.7 54.4 

Tic-tac-toe 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 71.6 75.3 77.4 77.7 76.0 

Wine 88.0 90.8 90.7 91.4 90.5 91.6 92.9 92.2 92.2 92.2 92.0 93.3 92.2 94.6 92.2 

ZOO 83.3 81.5 83.3 83.3 83.3 91.2 90.2 90.2 90.2 90.2 91.1 93.1 94.1 94.1 94.1 
Mean 73.5 75.1 75.5 76.1 74.9 76.5 77.5 77.7 78.2 77.4 76.6 78.2 77.9 78.9 78.1 

 
For each experiment Ens achieves the highest overall accuracy, while the original J48 trees attain the 

lowest. It is also relevant to note that the alternative solutions generated with GP (Rnd) have a higher overall 
accuracy than J48. Since the other techniques select a subset of these solutions, they should also be better 
than J48.  

Ens is clearly the best techniques with the highest overall accuracy for all experiments, and with the 
highest accuracy on 15 data sets for 3S, 10 for 5S and 11 for 7S. A pairwise sign test at 0.05 significance 
level (presented in Table 4) shows that Ens is significantly better than all other techniques for 3S and 7S. For 
5S the results are not significant, but Ens clearly outperforms the other techniques and only loses three times 
agains J48, five times against All, six times against Trn and three times against Sim. 

Table 4. Pairwise sign test  Table 5. Average likeness of Ens trees 

 
 
 
 
 
 

Finally, the group likeness of the trees selected by Ens is presented in the Table 5 above. The idea is that 
the selected trees should be accurate and representative for the group.  To be representative the minimum 
requirement is that the solutions is more similar to the trees in the group than to trees not in the group. Since 
the groups are created from trees with the same root split, the similarity is at least 1.0 for any tree selected 
from a group (Grp) of trees. 

Clearly the trees selected by Ens are more similar to the trees in the corresponding group than to all trees. 
Furthermore, the group similarity increases with size of the trees. On average the trees selected by Ens shares 
46% of the splits with any member which should be compared to 16% shared with all alternative trees.   

α=0.05 J48 All Trn Sim 

3S Ens 0.0125 0.0013 0.0042 0.0003 

5S Ens 0.0075 0.0963 0.6072 0.0352 

7S Ens 0.0192 0.0044 0.0013 0.0127 

  Real # Ifs Similarity Grp Similarity All 

3S 2.4 1.04 / 43% 0.27 / 11% 

5S 4.0 1.94 / 48% 0.75 / 19% 

7S 5.5 2.56 / 46% 1.02 / 19% 
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6. CONCLUSION 

In this paper we argue for a method aimed at generating a suitable number of alternative decision trees with 
comparable accuracy and complexity.  When too many alternative trees exist, they are grouped and 
representative accurate solutions are selected from each group. Using domain knowledge, a decision maker 
could then select a single best tree and, if required, be presented with a small set of similar solutions, in order 
to further improve his decisions. The experiments support the feasibility of the purposed method since they 
show that: 

• it is often possible to create many alternative trees, which all have comparable training accuracy and 
complexity. In average 120 alternative trees could be created for each original tree, which of course are more 
than what could be handled manually. Larger trees increase the number of alternative solutions even if the 
larger trees attain a higher accuracy. 

• ensemble fidelity can be used to select several accurate trees from groups of alternative trees. In the 
experiment, trees were group based on their root split and an ensemble was created for each group. The trees 
that were most faithful to each ensemble (in terms of predictions) clearly outperform the average tree. 
Furthermore, trees selected in this manner are significantly better than the original tree and are also superior 
to selecting trees based on their training accuracy. 

• the selected trees can be considered to be representative for their group, since they are more similar 
to trees inside than outside their group.  
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