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Abstract - Standard kNN suffers from two major 

deficiencies, both related to the parameter k. First of all, it 

is well-known that the parameter value k is not only 

extremely important for the performance, but also very hard 

to estimate beforehand. In addition, the fact that k is a 

global constant, totally independent of the particular region 

in which an instance to be classified falls, makes standard 

kNN quite blunt. In this paper, we introduce a novel 

instance-based learner, specifically designed to avoid the 

two drawbacks mentioned above. The suggested technique, 

named G-kNN, optimizes the number of neighbors to 

consider for each specific test instance, based on its 

position in input space; i.e. the algorithm uses several, 

locally optimized k’s, instead of just one global. More 

specifically, G-kNN uses genetic programming to build 

decision trees, partitioning the input space in regions, 

where each leaf node (region) contains a kNN classifier 

with a locally optimized k. In the experimentation, using 27 

datasets from the UCI repository, the basic version of G-

kNN is shown to significantly outperform standard kNN, 

with respect to accuracy. Although not evaluated in this 

study, it should be noted that the flexibility of genetic 

programming makes sophisticated extensions, like weighted 

voting and axes scaling, fairly straightforward. 

Keywords: Instance-based learner, kNN, Classification, 
Genetic programming. 

 

1 Introduction 

  When performing predictive classification using 
instance based learners (or lazy learners), test instances are 
classified based on their similarity to existing training 
instances. The most common lazy approach is nearest 
neighbor classification. When classifying a novel instance, 
the algorithm first finds the majority class, Cm, among the k 
closest (according to some distance measure) training set 
instances. The test instance is then classified as belonging to 
class Cm. The value k is a parameter to the algorithm, and 
the entire technique is known as k-Nearest Neighbor (kNN).  

kNN, consequently, does not, in contrast to techniques like 
neural networks and decision trees, use a global model 
covering the entire input space. Instead, classification is 
based on local information. This use of neighboring 

instances for the actual classification makes it, in theory, 
possible for kNN to produce arbitrarily shaped decision 
boundaries, while decision trees and rule-based learners are 
constrained to rectilinear decision boundaries. 

Standard kNN, as described above, is a straightforward and 
frequently used classification technique. In practice, kNN 
normally performs quite well, in spite of its simplicity. 
Often, standard kNN is used as a first choice, if nothing else 
to obtain a lower bound estimation of the classification rate 
that should be achieved by more powerful methods, like 
neural networks or ensemble techniques; see e.g. [1]. 

Standard kNN has, however, at least two major weaknesses. 
First of all, the parameter value k is extremely important. If 
k is too small, the algorithm becomes very susceptible to 
noise. If k is too large, the locality aspect becomes less 
important, typically leading to test instances being 
misclassified based on training instances quite different 
from the test instance. Unsurprisingly, there is no “golden” 
k, that performs well on a majority of problems, although 
most data mining tools use a default value of k=10. One 
straightforward, and frequently used, way of determining k, 
is by means of cross-validation on the training data, which 
involves a significant computational cost. 

The second drawback is slightly more subtle. Even for a 
single dataset, the optimal value for k most likely varies 
over the particular regions of the input space. If cross-
validation is used to optimize k, this will most likely 
produce a k-value that sacrifices performance in some 
regions to obtain better overall performance. This problem 
becomes even more apparent if voting results are used to 
determine class probability estimates. If, as an example, 
kNN with k=11 is applied to a binary problem, a probability 
estimate based on the relative frequency interprets a 6-5 
vote as a very close call. If, however, the six closest 
instances all voted for the majority class, this should 
intuitively be a very strong support for that class, in contrast 
to what is provided by the class probability estimate.  

More sophisticated kNN algorithms have partly addressed 
these drawbacks of standard kNN, typically by using voting 
schemes where each vote is weighted with the distance to 
the test instance; see e.g. [2]. It should, however, be noted 
that these methods are still restricted to using a global k, i.e., 
one k-value for the entire dataset, rather than a locally 



optimized k. So, although these methods are slightly less 
sensitive to the actual value of k, the choice is still of major 
importance.  

In this paper, we introduce a novel instance-based learner 
that does not require the number of neighbors to consider as 
a parameter. The suggested technique, named G-kNN, 
instead uses a decision tree, evolved by Genetic 
Programming (GP), to determine how many neighbors to 
use when classifying a specific test instance, falling into a 
particular leaf. G-kNN, consequently, uses a set of local k-
values, instead of one global.  

In the experimentation, we investigate how the novel 
algorithm, in its basic form, compares to standard kNN. It 
should be noted, though, that the suggested algorithm can 
easily be extended with more elaborate strategies, like 
distance-weighted voting or axes scaling based on attribute 
importance, not considered in this study. As a matter of fact, 
the flexibility of GP makes it rather straightforward to, for 
instance, include a set of distance weights in each region 
(leaf node). GP would, in that case, evolve a decision tree 
determining the regions, where each region contains an 
evolved k-value and an evolved set of distance weights.  

2 Method 

 As mentioned in the introduction, the overall idea of 
G-kNN is to use GP to evolve classification trees, where 
interior nodes represent splits, similar to decision trees like 
CART [3] and C5.0 [4]. Leaf nodes, however, do not 
directly classify an instance, but instead use some version of 
kNN for all test instances reaching that leaf node. In this 
study, we evaluate three different versions of the suggested 
technique.  

When using global G-kNN, a test instance reaching a 
specific leaf is classified using the k nearest neighbors, even 
if some of those neighbors are not in the specific leaf; see 
Figure 1 below. In the example, where k=5, the test (black) 
instance is classified using the five closest instances (gray), 
despite the fact that four of these are in a different leaf than 
the test instance. Global G-kNN, consequently, optimizes 
the separation in regions, and the k-values for each region. 

 

Figure 1: Selection of 5 neighbors using global G-kNN 

The local G-KNN, on the other hand, only considers 
training instances falling in the same leaf node as the test 
instance;  see Figure 2 below. Here, the test instance is 
classified using the five closest instances in the leaf. So, the 
local technique produces a genetically evolved decision tree, 
where classification is based on a voting among the k 

nearest instances in the specific leaf.  

 

Figure 2: Selection of 5 neighbors using local G-kNN 

Comparing local and global G-kNN, the global technique is 
more similar to standard kNN. The main difference is that 
several, locally optimized, k-values are used instead of just 
one global k. Local G-kNN, in contrast, is more similar to 
decision trees. Here, however, leaf nodes do not directly 
classify a test instance based on the majority class of all test 
instances reaching that leaf, but instead employs a local 
kNN, restricted to the instances in the specific leaf.   

The third version, called mixed, simultaneously allows leaf 
nodes using either global or local kNN; i.e. the resulting tree 
may very well include leaf nodes of both kinds. Using this 
version, evolution will divide the input space in regions and 
then use either a kNN with a locally optimized k-value, or a 
voting among an optimized number of instances in that leaf 
node when classifying a novel instance. 



Figure 3 below shows a sample G-kNN tree evolved from 
the Statlog Heart dataset. Here, G-kNN uses four different 
regions where the k-values range from 3 to 25. As an 
example, if the resting blood pressure is higher than 124, the 
model would use only 3 neighbors if the patient is older than 
65, but 25 neighbors if the patient is younger than 65. The 
numbers enclosed in the parentheses show the number of 
instances reaching that specific leaf, in this particular run.  

if resting_blood_pressure < 124.0 
 |T: if age > 41 
 |    |T: KNN13(71)  
 |    |F: KNN1(12)  
 |F: if age > 65 
 |    |T: KNN3(18)  
 |    |F: KNN25(142)  

Figure 3: Sample global G-kNN tree from Heart dataset 

The model evolved in Figure 4 below is a sample mixed G-
kNN tree from the WBC dataset. As seen in the figure, G-
kNN here uses both local and global kNN, depending on the 
different regions.  

if Normal_Nucleoli < 7 
 |T: if Marginal_Adhesion > 1 
 |   |T: if Marginal_Adhesion > 3 
 |   |   |T: LocalKNN5(84)  
 |   |   |F: KNN9(85)  
 |   |F: LocalKNN5(355)  
 |F: KNN15(105)  

Figure 4: Sample mixed G-kNN tree from WBC dataset 

Figure 5 below describes the representation language used 
by G-kNN. The sets F and T describe the available functions 
and terminals, respectively. The functions are an if-

statement and three relational operators. The terminals are 
attributes from the dataset, random real numbers, and k-
values for kNN. The exact grammar used is also presented, 
using Backus-Naur form. It should be noted that the strategy 
(i.e. global, local or mixed) is determined by including 
different kNN node functions in the grammar. 

F = {if, ==, <, >} 

T = {i
1
, i

2
, …, i

n
, ℜ, 1, 3, …, 25} 

 
DTree  :- (if RExp Dtree Dtree) | kNN node 
RExp  :- (ROp ConI ConC) | (== CatI CatC) 
ROp  :- < | > 
CatI  :- Categorical input variable 
ConI :- Continuous input variable 
CatC :- Categorical attribute value 

ConC :- ℜ 

kNN node :- kNN k-value | LocalkNN k-value 
k-value :- 1, 3, …, 25 

Figure 5: Representation language 

The most natural fitness function to use for GP classification 
is probably accuracy on training and/or validation data. In 
this study, we settled for using only training accuracy, 
despite the fact that initial experimentation showed some 
risk of overfitting. Since kNN in itself is quite powerful, but 
also rather computationally intense, small populations and 

few generations were deemed to be sufficient. The GP 
settings used are found in Table 1 below. 

Table 1: GP parameters 

Parameter Value 

Crossover rate 0.8 

Mutation rate 0.01 

Population size 100 

Generations 50 

Persistence 20 

Creation depth 5 

Creation method Ramped half-and-half 

Fitness function Training accuracy 

Selection Roulette wheel 

Elitism Yes 

 

In the experimentation, we wanted to compare the different 
versions of G-kNN against normal kNN. Since several of 
the problems used are binary, we decided to use only odd k-

values for both standard kNN and G-kNN. More 
specifically, the three k-values evaluated for normal kNN 
are 5, 11 and 17, while possible k-values for G-kNN are all 
odd numbers between 1 and 25. 

Normal kNN is, of course, deterministic. GP (and 
consequently G-kNN) is, on the other hand, inherently 
indeterministic; i.e. different runs on identical data can 
produce quite different models. Because of this 
inconsistency, we decided to run G-kNN 10 times on each 
fold in the 10-fold stratified cross-validation used for 
evaluating the standard kNNs. So, the results reported for G-
kNN are the average test set accuracies over the ten folds, 
where the result on each fold is the average from 10 runs. It 
should be noted that it most certainly would be beneficial 
for G-kNN to instead select a specific model based on either 
training or validation accuracy, but, as mentioned above, we 
did not employ that strategy here. 

2.1 Datasets 

 The 27 datasets used are all publicly available from the 
UCI Repository [5]. When preprocessing, all attributes were 
linearly normalized to the interval [0, 1]. For numerical 
attributes, missing values were handled by replacing the 
missing value with the mean value of that attribute. For 
nominal attributes, missing values were replaced with the 
mode; i.e. the most common value. 

It is, of course, very important how distance is measured 
when using instance-based learners. In this study, standard 
Euclidean distance between instance vectors is used. For 
nominal attributes the distance is either 0 or 1; i.e. the 
distance is 0 if the values are identical and 1 otherwise. 

Nominal and ordered categorical attributes could potentially 
be handled differently; e.g. ordered attributes could use the 



same distance function as continuous attributes. On many 
UCI datasets, it is quite obvious from the problem 
descriptions that several categorical attributes actually are 
ordered. In a previous study, where we suggested another 
kNN algorithm, an effort was made to identify the character 
of each attribute in the datasets used. Although this was not 
explicitly targeted in the evaluation, it was obvious to us 
that this identification of attribute characteristics generally 
increased kNN accuracy; see [6]. In this study, however, all 
attributes marked as categorical were, for simplicity, treated 
as nominal. For a summary of dataset characteristics, see 
Table 2 below. Inst. is the total number of instances in the 
dataset. Class is the number of classes, Con. is the number 
of continuous input variables and Cat. is the number of 
categorical input variables. 

Table 2: Datasets 

Dataset Inst. Class Con. Cat. 

Breast cancer (Bcancer) 286 2 0 9 

Bupa liver disorders (Bld) 345 2 6 0 

Cleveland heart disease (Cleve) 303 2 6 7 

CMC 1473 3 2 7 

Credit-A (Cred-A) 690 2 6 9 

Credit-G (Cred-G) 1000 2 7 13 

Cylinder bands (CB) 512 2 20 20 

Ecoli 336 8 7 0 

Glass 214 7 9 0 

Haberman (Haber) 306 2 3 0 

Heart disease Statlog (Heart) 270 2 6 7 

Hepatitis (Hepati) 155 2 6 13 

Horse colic (Horse) 368 2 7 15 

Iono 351 2 34 0 

Iris 150 3 4 0 

Labor 57 2 8 8 

Lymph 148 4 3 15 

Pima Indian diabetes (PID) 768 2 8 0 

Sick 2800 2 7 22 

Sonar 208 2 60 0 

TAE 151 3 1 4 

Tictactoe (TTT) 958 2 0 9 

Vehicle 846 4 18 0 

Votes 435 2 0 16 

Wine 178 3 13 0 

Wisconsin breast cancer (WBC) 699 2 9 0 

Zoo 100 7 0 16 

 

3 Results 

 Table 3 below shows the results from the 
experimentation. The results reported are obtained using 10-
fold stratified cross-validation. For G-kNN, as described 
above, the results for each fold is the mean accuracy from 
10 runs.  

First of all, it is interesting to note that all three versions of 
kNN obtained quite similar overall results. On single 
datasets, however, it was sometimes clearly better to use 

k=5 and sometimes clearly better to use k=11 or k=17. This 
demonstrates not only that the k-value is very important for 
kNN, but also that no specific value is substantially better 
overall.  

Table 3: Accuracies 

kNN G-kNN 
Dataset 

k=5 k=11 k=17 Global Local Mix 

Bcancer 0.6927 0.7485 0.7518 0.7332 0.7188 0.7251 

Bld 0.6116 0.6234 0.6384 0.6505 0.6399 0.6427 

Cleve 0.8282 0.8247 0.8278 0.8250 0.8253 0.8206 

CMC 0.4650 0.4759 0.4732 0.4666 0.5184 0.5168 

Cred-A 0.8710 0.8667 0.8638 0.8652 0.8644 0.8609 

Cred-G 0.7320 0.7390 0.7330 0.7326 0.7322 0.7296 

CB 0.7315 0.7130 0.6981 0.8006 0.7937 0.7526 

Ecoli 0.8692 0.8662 0.8335 0.8706 0.8637 0.8709 

Glass 0.6784 0.6357 0.6177 0.6944 0.6867 0.7022 

Haber 0.6926 0.7452 0.7223 0.7248 0.7133 0.7185 

Heart 0.8037 0.8148 0.8222 0.8155 0.8181 0.8104 

Hepati 0.8458 0.8458 0.8200 0.8387 0.8346 0.8341 

Horse 0.8098 0.8182 0.8264 0.8307 0.8258 0.8288 

Iono 0.8547 0.8463 0.8434 0.8697 0.8729 0.8789 

Iris 0.9533 0.9467 0.9667 0.9547 0.9540 0.9567 

Labor 0.8867 0.8367 0.8000 0.8717 0.8573 0.8530 

Lymph 0.8390 0.8262 0.8400 0.8502 0.8417 0.8444 

PID 0.7291 0.7331 0.7382 0.7340 0.7321 0.7318 

Sick 0.9634 0.9597 0.9557 0.9644 0.9640 0.9660 

Sonar 0.8360 0.7260 0.7060 0.8534 0.8113 0.8240 

TAE 0.5508 0.5104 0.4979 0.5800 0.5295 0.5455 

TTT 0.8841 0.9530 0.9813 0.9904 0.9776 0.9917 

Vehicle 0.6975 0.6786 0.6845 0.6889 0.6947 0.6911 

Votes 0.9335 0.9289 0.9266 0.9344 0.9584 0.9544 

Wine 0.9660 0.9775 0.9775 0.9741 0.9666 0.9694 

WBC 0.9643 0.9657 0.9657 0.9571 0.9559 0.9594 

Zoo 0.9500 0.8818 0.8827 0.9651 0.9362 0.9523 

MEAN 0.8015 0.7958 0.7924 0.8162 0.8106 0.8123 

 

Turning to G-kNN, all three versions obtained higher 
average accuracies than the three standard kNNs. Especially 
the global G-kNN performed remarkably well, winning 7 
datasets and almost always (on 23 of 27 datasets) finishing 
among the top three techniques.  

Naturally, the mean results, averaged over all datasets, give 
only a crude comparison between the techniques evaluated. 
With this in mind, ranks for each technique on every dataset 
are also presented in Table 4 below.  

 



Table 4: Ranks 

kNN G-kNN 
Dataset 

k=5 k=11 k=17 Global Local Mix 

Bcancer 6 2 1 3 5 4 

Bld 6 5 4 1 3 2 

Cleve 1 5 2 4 3 6 

CMC 6 3 4 5 1 2 

Cred-A 1 2 5 3 4 6 

Cred-G 5 1 2 3 4 6 

CB 4 5 6 1 2 3 

Ecoli 3 4 6 2 5 1 

Glass 4 5 6 2 3 1 

Haber 6 1 3 2 5 4 

Heart 6 4 1 3 2 5 

Hepati 1 1 6 3 4 5 

Horse 6 5 3 1 4 2 

Iono 4 5 6 3 2 1 

Iris 5 6 1 3 4 2 

Labor 1 5 6 2 3 4 

Lymph 5 6 4 1 3 2 

PID 6 3 1 2 4 5 

Sick 4 5 6 2 3 1 

Sonar 2 5 6 1 4 3 

TAE 2 5 6 1 4 3 

TTT 6 5 3 2 4 1 

Vehicle 1 6 5 4 2 3 

Votes 4 5 6 3 1 2 

Wine 6 1 1 3 5 4 

WBC 3 1 1 5 6 4 

Zoo 3 6 5 1 4 2 

MEAN 3.96 3.96 3.93 2.44 3.48 3.11 

 

One very important observation in Table 4 is the fact that 
the different versions of standard kNN (especially k=5 and 
k=17) are normally either very good (ranks 1-2) or very 
poor (ranks 5-6). This picture, together with the fact that it is 
so hard to estimate a good k-value in advance, pinpoints one 
of the major weaknesses for standard kNN. G-kNN 
performance, on the other hand, is not only better overall, 
but also much more stable. As a matter of fact, all three G-
kNN versions perform at least fairly well (ranks 1-4) on a 
large majority of the data sets. 

To determine if G-kNN performance is significantly better 
than standard kNN, we use the statistical tests recommended 
by Demsar [7] for comparing several algorithms against 
each other over a number of datasets; i.e. a Friedman test 
[8], followed by a Nemenyi post-hoc test [9]. The tests use 
the ranks displayed in Table 4 above.  

Comparing six classifiers using 27 datasets, the critical 

distance (for α=0.05) is 1.45, so based on these tests, G-
kNN global obtained significantly higher accuracy than all 
three kNN versions. Furthermore, the ranks also show that 
both Mixed and (to a lesser degree) Local G-kNN clearly 
outperformed standard kNN, even if the differences are not 
statistically significant.  

4 Conclusions 

 We have in this paper suggested a novel instance based 
learner, called G-kNN, where genetic programming is used 
to evolve decision trees with kNN classifiers in the leaves. 
G-kNN is primarily designed to avoid the dependence on 
the parameter value k in standard kNN, but also to be able to 
produce accurate predictions, based on local information.  

Although all three versions of G-kNN combine ideas from 
decision trees and kNN, and the only internal difference is 
the representation language used, their inductive biases are 
actually quite different. The global technique mostly 
resembles standard kNN, but locally optimized k-values are 
used instead of just one global k. Local G-kNN is more 
similar to decision trees, but the classification of a test 
instance is based on neighboring instances in the specific 
leaf. The mixed strategy, finally, permits a locally optimized 
combination of both the local and global strategy. 

In the experimentation, G-kNN clearly outperformed the 
three versions of standard kNN used in the evaluation. As a 
matter of fact, G-kNN trees evolved using the global 
strategy were significantly more accurate than all kNN 
versions. In addition, the performance obtained by the other 
versions of G-kNN were clearly better than standard kNN, 
although the differences are not statistically significant.  

5 Discussion and future work 

 It must be noted that the result reported for G-kNN in 
this study most likely should be regarded as baseline 
performance. Almost any reasonable heuristics for selecting 
specific G-kNN models would probably improve the 
performance significantly. With this in mind, it is a key 
priority of future studies to find and evaluate such 
heuristics. 

As described above, we believe that G-kNN could benefit 
even more than standard kNN from extensions like 
weighted voting and axes scaling, due to the inherent ability 
to optimize the model based on local information. This, 
however, remains to be verified through experimentation. 

The suggested method is obviously much more 
computationally intense than standard kNN. With this in 
mind, G-kNN performance must in future studies be 
compared to techniques like neural networks, SVMs and 
different ensemble techniques. Having said that, we believe 
that G-kNN, enhanced with, for instance, genetically 
evolved local attribute weighting and axes scaling, may be 
able to compete with the more powerful techniques. 
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