
Evolving a Locally Optimized Instance Based Learner

Ulf Johansson
1*

, Rikard König
1
 and Lars Niklasson

2

1School of Business and Informatics, University of Borås, Sweden
2 School of Humanities and Informatics, University of Skövde, Sweden

* U. Johansson and R. König are equal contributors to this paper.

Abstract - Standard kNN suffers from two major

deficiencies, both related to the parameter k. First of all, it

is well-known that the parameter value k is not only

extremely important for the performance, but also very hard

to estimate beforehand. In addition, the fact that k is a

global constant, totally independent of the particular region

in which an instance to be classified falls, makes standard

kNN quite blunt. In this paper, we introduce a novel

instance-based learner, specifically designed to avoid the

two drawbacks mentioned above. The suggested technique,

named G-kNN, optimizes the number of neighbors to

consider for each specific test instance, based on its

position in input space; i.e. the algorithm uses several,

locally optimized k’s, instead of just one global. More

specifically, G-kNN uses genetic programming to build

decision trees, partitioning the input space in regions,

where each leaf node (region) contains a kNN classifier

with a locally optimized k. In the experimentation, using 27

datasets from the UCI repository, the basic version of G-

kNN is shown to significantly outperform standard kNN,

with respect to accuracy. Although not evaluated in this

study, it should be noted that the flexibility of genetic

programming makes sophisticated extensions, like weighted

voting and axes scaling, fairly straightforward.

Keywords: Instance-based learner, kNN, Classification,
Genetic programming.

1 Introduction

 When performing predictive classification using
instance based learners (or lazy learners), test instances are
classified based on their similarity to existing training
instances. The most common lazy approach is nearest
neighbor classification. When classifying a novel instance,
the algorithm first finds the majority class, Cm, among the k
closest (according to some distance measure) training set
instances. The test instance is then classified as belonging to
class Cm. The value k is a parameter to the algorithm, and
the entire technique is known as k-Nearest Neighbor (kNN).

kNN, consequently, does not, in contrast to techniques like
neural networks and decision trees, use a global model
covering the entire input space. Instead, classification is
based on local information. This use of neighboring

instances for the actual classification makes it, in theory,
possible for kNN to produce arbitrarily shaped decision
boundaries, while decision trees and rule-based learners are
constrained to rectilinear decision boundaries.

Standard kNN, as described above, is a straightforward and
frequently used classification technique. In practice, kNN
normally performs quite well, in spite of its simplicity.
Often, standard kNN is used as a first choice, if nothing else
to obtain a lower bound estimation of the classification rate
that should be achieved by more powerful methods, like
neural networks or ensemble techniques; see e.g. [1].

Standard kNN has, however, at least two major weaknesses.
First of all, the parameter value k is extremely important. If
k is too small, the algorithm becomes very susceptible to
noise. If k is too large, the locality aspect becomes less
important, typically leading to test instances being
misclassified based on training instances quite different
from the test instance. Unsurprisingly, there is no “golden”
k, that performs well on a majority of problems, although
most data mining tools use a default value of k=10. One
straightforward, and frequently used, way of determining k,
is by means of cross-validation on the training data, which
involves a significant computational cost.

The second drawback is slightly more subtle. Even for a
single dataset, the optimal value for k most likely varies
over the particular regions of the input space. If cross-
validation is used to optimize k, this will most likely
produce a k-value that sacrifices performance in some
regions to obtain better overall performance. This problem
becomes even more apparent if voting results are used to
determine class probability estimates. If, as an example,
kNN with k=11 is applied to a binary problem, a probability
estimate based on the relative frequency interprets a 6-5
vote as a very close call. If, however, the six closest
instances all voted for the majority class, this should
intuitively be a very strong support for that class, in contrast
to what is provided by the class probability estimate.

More sophisticated kNN algorithms have partly addressed
these drawbacks of standard kNN, typically by using voting
schemes where each vote is weighted with the distance to
the test instance; see e.g. [2]. It should, however, be noted
that these methods are still restricted to using a global k, i.e.,
one k-value for the entire dataset, rather than a locally

optimized k. So, although these methods are slightly less
sensitive to the actual value of k, the choice is still of major
importance.

In this paper, we introduce a novel instance-based learner
that does not require the number of neighbors to consider as
a parameter. The suggested technique, named G-kNN,
instead uses a decision tree, evolved by Genetic
Programming (GP), to determine how many neighbors to
use when classifying a specific test instance, falling into a
particular leaf. G-kNN, consequently, uses a set of local k-
values, instead of one global.

In the experimentation, we investigate how the novel
algorithm, in its basic form, compares to standard kNN. It
should be noted, though, that the suggested algorithm can
easily be extended with more elaborate strategies, like
distance-weighted voting or axes scaling based on attribute
importance, not considered in this study. As a matter of fact,
the flexibility of GP makes it rather straightforward to, for
instance, include a set of distance weights in each region
(leaf node). GP would, in that case, evolve a decision tree
determining the regions, where each region contains an
evolved k-value and an evolved set of distance weights.

2 Method

 As mentioned in the introduction, the overall idea of
G-kNN is to use GP to evolve classification trees, where
interior nodes represent splits, similar to decision trees like
CART [3] and C5.0 [4]. Leaf nodes, however, do not
directly classify an instance, but instead use some version of
kNN for all test instances reaching that leaf node. In this
study, we evaluate three different versions of the suggested
technique.

When using global G-kNN, a test instance reaching a
specific leaf is classified using the k nearest neighbors, even
if some of those neighbors are not in the specific leaf; see
Figure 1 below. In the example, where k=5, the test (black)
instance is classified using the five closest instances (gray),
despite the fact that four of these are in a different leaf than
the test instance. Global G-kNN, consequently, optimizes
the separation in regions, and the k-values for each region.

Figure 1: Selection of 5 neighbors using global G-kNN

The local G-KNN, on the other hand, only considers
training instances falling in the same leaf node as the test
instance; see Figure 2 below. Here, the test instance is
classified using the five closest instances in the leaf. So, the
local technique produces a genetically evolved decision tree,
where classification is based on a voting among the k

nearest instances in the specific leaf.

Figure 2: Selection of 5 neighbors using local G-kNN

Comparing local and global G-kNN, the global technique is
more similar to standard kNN. The main difference is that
several, locally optimized, k-values are used instead of just
one global k. Local G-kNN, in contrast, is more similar to
decision trees. Here, however, leaf nodes do not directly
classify a test instance based on the majority class of all test
instances reaching that leaf, but instead employs a local
kNN, restricted to the instances in the specific leaf.

The third version, called mixed, simultaneously allows leaf
nodes using either global or local kNN; i.e. the resulting tree
may very well include leaf nodes of both kinds. Using this
version, evolution will divide the input space in regions and
then use either a kNN with a locally optimized k-value, or a
voting among an optimized number of instances in that leaf
node when classifying a novel instance.

Figure 3 below shows a sample G-kNN tree evolved from
the Statlog Heart dataset. Here, G-kNN uses four different
regions where the k-values range from 3 to 25. As an
example, if the resting blood pressure is higher than 124, the
model would use only 3 neighbors if the patient is older than
65, but 25 neighbors if the patient is younger than 65. The
numbers enclosed in the parentheses show the number of
instances reaching that specific leaf, in this particular run.

if resting_blood_pressure < 124.0
 |T: if age > 41
 | |T: KNN13(71)
 | |F: KNN1(12)
 |F: if age > 65
 | |T: KNN3(18)
 | |F: KNN25(142)

Figure 3: Sample global G-kNN tree from Heart dataset

The model evolved in Figure 4 below is a sample mixed G-
kNN tree from the WBC dataset. As seen in the figure, G-
kNN here uses both local and global kNN, depending on the
different regions.

if Normal_Nucleoli < 7
 |T: if Marginal_Adhesion > 1
 | |T: if Marginal_Adhesion > 3
 | | |T: LocalKNN5(84)
 | | |F: KNN9(85)
 | |F: LocalKNN5(355)
 |F: KNN15(105)

Figure 4: Sample mixed G-kNN tree from WBC dataset

Figure 5 below describes the representation language used
by G-kNN. The sets F and T describe the available functions
and terminals, respectively. The functions are an if-

statement and three relational operators. The terminals are
attributes from the dataset, random real numbers, and k-
values for kNN. The exact grammar used is also presented,
using Backus-Naur form. It should be noted that the strategy
(i.e. global, local or mixed) is determined by including
different kNN node functions in the grammar.

F = {if, ==, <, >}

T = {i
1
, i

2
, …, i

n
, ℜ, 1, 3, …, 25}

DTree :- (if RExp Dtree Dtree) | kNN node
RExp :- (ROp ConI ConC) | (== CatI CatC)
ROp :- < | >
CatI :- Categorical input variable
ConI :- Continuous input variable
CatC :- Categorical attribute value

ConC :- ℜ

kNN node :- kNN k-value | LocalkNN k-value
k-value :- 1, 3, …, 25

Figure 5: Representation language

The most natural fitness function to use for GP classification
is probably accuracy on training and/or validation data. In
this study, we settled for using only training accuracy,
despite the fact that initial experimentation showed some
risk of overfitting. Since kNN in itself is quite powerful, but
also rather computationally intense, small populations and

few generations were deemed to be sufficient. The GP
settings used are found in Table 1 below.

Table 1: GP parameters

Parameter Value

Crossover rate 0.8

Mutation rate 0.01

Population size 100

Generations 50

Persistence 20

Creation depth 5

Creation method Ramped half-and-half

Fitness function Training accuracy

Selection Roulette wheel

Elitism Yes

In the experimentation, we wanted to compare the different
versions of G-kNN against normal kNN. Since several of
the problems used are binary, we decided to use only odd k-

values for both standard kNN and G-kNN. More
specifically, the three k-values evaluated for normal kNN
are 5, 11 and 17, while possible k-values for G-kNN are all
odd numbers between 1 and 25.

Normal kNN is, of course, deterministic. GP (and
consequently G-kNN) is, on the other hand, inherently
indeterministic; i.e. different runs on identical data can
produce quite different models. Because of this
inconsistency, we decided to run G-kNN 10 times on each
fold in the 10-fold stratified cross-validation used for
evaluating the standard kNNs. So, the results reported for G-
kNN are the average test set accuracies over the ten folds,
where the result on each fold is the average from 10 runs. It
should be noted that it most certainly would be beneficial
for G-kNN to instead select a specific model based on either
training or validation accuracy, but, as mentioned above, we
did not employ that strategy here.

2.1 Datasets

 The 27 datasets used are all publicly available from the
UCI Repository [5]. When preprocessing, all attributes were
linearly normalized to the interval [0, 1]. For numerical
attributes, missing values were handled by replacing the
missing value with the mean value of that attribute. For
nominal attributes, missing values were replaced with the
mode; i.e. the most common value.

It is, of course, very important how distance is measured
when using instance-based learners. In this study, standard
Euclidean distance between instance vectors is used. For
nominal attributes the distance is either 0 or 1; i.e. the
distance is 0 if the values are identical and 1 otherwise.

Nominal and ordered categorical attributes could potentially
be handled differently; e.g. ordered attributes could use the

same distance function as continuous attributes. On many
UCI datasets, it is quite obvious from the problem
descriptions that several categorical attributes actually are
ordered. In a previous study, where we suggested another
kNN algorithm, an effort was made to identify the character
of each attribute in the datasets used. Although this was not
explicitly targeted in the evaluation, it was obvious to us
that this identification of attribute characteristics generally
increased kNN accuracy; see [6]. In this study, however, all
attributes marked as categorical were, for simplicity, treated
as nominal. For a summary of dataset characteristics, see
Table 2 below. Inst. is the total number of instances in the
dataset. Class is the number of classes, Con. is the number
of continuous input variables and Cat. is the number of
categorical input variables.

Table 2: Datasets

Dataset Inst. Class Con. Cat.

Breast cancer (Bcancer) 286 2 0 9

Bupa liver disorders (Bld) 345 2 6 0

Cleveland heart disease (Cleve) 303 2 6 7

CMC 1473 3 2 7

Credit-A (Cred-A) 690 2 6 9

Credit-G (Cred-G) 1000 2 7 13

Cylinder bands (CB) 512 2 20 20

Ecoli 336 8 7 0

Glass 214 7 9 0

Haberman (Haber) 306 2 3 0

Heart disease Statlog (Heart) 270 2 6 7

Hepatitis (Hepati) 155 2 6 13

Horse colic (Horse) 368 2 7 15

Iono 351 2 34 0

Iris 150 3 4 0

Labor 57 2 8 8

Lymph 148 4 3 15

Pima Indian diabetes (PID) 768 2 8 0

Sick 2800 2 7 22

Sonar 208 2 60 0

TAE 151 3 1 4

Tictactoe (TTT) 958 2 0 9

Vehicle 846 4 18 0

Votes 435 2 0 16

Wine 178 3 13 0

Wisconsin breast cancer (WBC) 699 2 9 0

Zoo 100 7 0 16

3 Results

 Table 3 below shows the results from the
experimentation. The results reported are obtained using 10-
fold stratified cross-validation. For G-kNN, as described
above, the results for each fold is the mean accuracy from
10 runs.

First of all, it is interesting to note that all three versions of
kNN obtained quite similar overall results. On single
datasets, however, it was sometimes clearly better to use

k=5 and sometimes clearly better to use k=11 or k=17. This
demonstrates not only that the k-value is very important for
kNN, but also that no specific value is substantially better
overall.

Table 3: Accuracies

kNN G-kNN
Dataset

k=5 k=11 k=17 Global Local Mix

Bcancer 0.6927 0.7485 0.7518 0.7332 0.7188 0.7251

Bld 0.6116 0.6234 0.6384 0.6505 0.6399 0.6427

Cleve 0.8282 0.8247 0.8278 0.8250 0.8253 0.8206

CMC 0.4650 0.4759 0.4732 0.4666 0.5184 0.5168

Cred-A 0.8710 0.8667 0.8638 0.8652 0.8644 0.8609

Cred-G 0.7320 0.7390 0.7330 0.7326 0.7322 0.7296

CB 0.7315 0.7130 0.6981 0.8006 0.7937 0.7526

Ecoli 0.8692 0.8662 0.8335 0.8706 0.8637 0.8709

Glass 0.6784 0.6357 0.6177 0.6944 0.6867 0.7022

Haber 0.6926 0.7452 0.7223 0.7248 0.7133 0.7185

Heart 0.8037 0.8148 0.8222 0.8155 0.8181 0.8104

Hepati 0.8458 0.8458 0.8200 0.8387 0.8346 0.8341

Horse 0.8098 0.8182 0.8264 0.8307 0.8258 0.8288

Iono 0.8547 0.8463 0.8434 0.8697 0.8729 0.8789

Iris 0.9533 0.9467 0.9667 0.9547 0.9540 0.9567

Labor 0.8867 0.8367 0.8000 0.8717 0.8573 0.8530

Lymph 0.8390 0.8262 0.8400 0.8502 0.8417 0.8444

PID 0.7291 0.7331 0.7382 0.7340 0.7321 0.7318

Sick 0.9634 0.9597 0.9557 0.9644 0.9640 0.9660

Sonar 0.8360 0.7260 0.7060 0.8534 0.8113 0.8240

TAE 0.5508 0.5104 0.4979 0.5800 0.5295 0.5455

TTT 0.8841 0.9530 0.9813 0.9904 0.9776 0.9917

Vehicle 0.6975 0.6786 0.6845 0.6889 0.6947 0.6911

Votes 0.9335 0.9289 0.9266 0.9344 0.9584 0.9544

Wine 0.9660 0.9775 0.9775 0.9741 0.9666 0.9694

WBC 0.9643 0.9657 0.9657 0.9571 0.9559 0.9594

Zoo 0.9500 0.8818 0.8827 0.9651 0.9362 0.9523

MEAN 0.8015 0.7958 0.7924 0.8162 0.8106 0.8123

Turning to G-kNN, all three versions obtained higher
average accuracies than the three standard kNNs. Especially
the global G-kNN performed remarkably well, winning 7
datasets and almost always (on 23 of 27 datasets) finishing
among the top three techniques.

Naturally, the mean results, averaged over all datasets, give
only a crude comparison between the techniques evaluated.
With this in mind, ranks for each technique on every dataset
are also presented in Table 4 below.

Table 4: Ranks

kNN G-kNN
Dataset

k=5 k=11 k=17 Global Local Mix

Bcancer 6 2 1 3 5 4

Bld 6 5 4 1 3 2

Cleve 1 5 2 4 3 6

CMC 6 3 4 5 1 2

Cred-A 1 2 5 3 4 6

Cred-G 5 1 2 3 4 6

CB 4 5 6 1 2 3

Ecoli 3 4 6 2 5 1

Glass 4 5 6 2 3 1

Haber 6 1 3 2 5 4

Heart 6 4 1 3 2 5

Hepati 1 1 6 3 4 5

Horse 6 5 3 1 4 2

Iono 4 5 6 3 2 1

Iris 5 6 1 3 4 2

Labor 1 5 6 2 3 4

Lymph 5 6 4 1 3 2

PID 6 3 1 2 4 5

Sick 4 5 6 2 3 1

Sonar 2 5 6 1 4 3

TAE 2 5 6 1 4 3

TTT 6 5 3 2 4 1

Vehicle 1 6 5 4 2 3

Votes 4 5 6 3 1 2

Wine 6 1 1 3 5 4

WBC 3 1 1 5 6 4

Zoo 3 6 5 1 4 2

MEAN 3.96 3.96 3.93 2.44 3.48 3.11

One very important observation in Table 4 is the fact that
the different versions of standard kNN (especially k=5 and
k=17) are normally either very good (ranks 1-2) or very
poor (ranks 5-6). This picture, together with the fact that it is
so hard to estimate a good k-value in advance, pinpoints one
of the major weaknesses for standard kNN. G-kNN
performance, on the other hand, is not only better overall,
but also much more stable. As a matter of fact, all three G-
kNN versions perform at least fairly well (ranks 1-4) on a
large majority of the data sets.

To determine if G-kNN performance is significantly better
than standard kNN, we use the statistical tests recommended
by Demsar [7] for comparing several algorithms against
each other over a number of datasets; i.e. a Friedman test
[8], followed by a Nemenyi post-hoc test [9]. The tests use
the ranks displayed in Table 4 above.

Comparing six classifiers using 27 datasets, the critical

distance (for α=0.05) is 1.45, so based on these tests, G-
kNN global obtained significantly higher accuracy than all
three kNN versions. Furthermore, the ranks also show that
both Mixed and (to a lesser degree) Local G-kNN clearly
outperformed standard kNN, even if the differences are not
statistically significant.

4 Conclusions

 We have in this paper suggested a novel instance based
learner, called G-kNN, where genetic programming is used
to evolve decision trees with kNN classifiers in the leaves.
G-kNN is primarily designed to avoid the dependence on
the parameter value k in standard kNN, but also to be able to
produce accurate predictions, based on local information.

Although all three versions of G-kNN combine ideas from
decision trees and kNN, and the only internal difference is
the representation language used, their inductive biases are
actually quite different. The global technique mostly
resembles standard kNN, but locally optimized k-values are
used instead of just one global k. Local G-kNN is more
similar to decision trees, but the classification of a test
instance is based on neighboring instances in the specific
leaf. The mixed strategy, finally, permits a locally optimized
combination of both the local and global strategy.

In the experimentation, G-kNN clearly outperformed the
three versions of standard kNN used in the evaluation. As a
matter of fact, G-kNN trees evolved using the global
strategy were significantly more accurate than all kNN
versions. In addition, the performance obtained by the other
versions of G-kNN were clearly better than standard kNN,
although the differences are not statistically significant.

5 Discussion and future work

 It must be noted that the result reported for G-kNN in
this study most likely should be regarded as baseline
performance. Almost any reasonable heuristics for selecting
specific G-kNN models would probably improve the
performance significantly. With this in mind, it is a key
priority of future studies to find and evaluate such
heuristics.

As described above, we believe that G-kNN could benefit
even more than standard kNN from extensions like
weighted voting and axes scaling, due to the inherent ability
to optimize the model based on local information. This,
however, remains to be verified through experimentation.

The suggested method is obviously much more
computationally intense than standard kNN. With this in
mind, G-kNN performance must in future studies be
compared to techniques like neural networks, SVMs and
different ensemble techniques. Having said that, we believe
that G-kNN, enhanced with, for instance, genetically
evolved local attribute weighting and axes scaling, may be
able to compete with the more powerful techniques.

ACKNOWLEDGMENT

This work was supported by the Information Fusion
Research Program (University of Skövde, Sweden) in
partnership with the Swedish Knowledge Foundation under
grant 2003/0104 (URL: http://www.infofusion.se).

6 References

[1] C. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, 1995.

[2] J. Zavrel, An empirical re-examination of weighted
voting for k-nn, 7

th
 Belgian-Dutch Conference on

Machine Learning, pp. 139–148, 1997.
[3] L. Breiman, J. H. Friedman, R. A. Olshen and C. J.

Stone, Classification and Regression Trees,
Wadsworth International Group, 1984.

[4] J. R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993.

[5] C. L. Blake and C. J. Merz, UCI Repository of

machine learning databases, University of California,
Department of Information and Computer Science,
1998.

[6] U. Johansson, H. Boström and R. König, Extending
Nearest Neighbor Classification with Spheres of
Confidence, 21

st
 Florida Artificial Intelligence

Research Society Conference (FLAIRS 08), AAAI
Press, pp. 282–287, 2008.

[7] J. Demšar, Statistical Comparisons of Classifiers over
Multiple Data Sets, Journal of Machine Learning

Research, 7:1–30, 2006.
[8] M. Friedman, The use of ranks to avoid the assumption

of normality implicit in the analysis of variance,
Journal of American Statistical Association, 32:675–
701,1937.

[9] P. B. Nemenyi. Distribution-free multiple

comparisons. PhD thesis, Princeton University, 1963.

