Rethinking Available Production Technologies – the case of a thermally insulating footwear concept

Nils-Krister Persson, Anna-Carin Jonsson, The Swedish School of Textiles, University of Borås
Nils-krister.persson@hb.se, annacarin.jonsson@gmail.com

Abstract
Consumption reduction is often regarded as profound for sustainability. The overwhelming studies are on the general public and its behaviour. Here we discuss a way for the company to lower consumption by avoiding inventory investments. Added value in terms of sustainability can be gained by using standard manufacturing technologies frequently found in the textile industry to produce new products beyond present paradigms. Specifically we develop knitting techniques on a circular knitting machine to enable production of a thermally insulating textile composite for a multi-component footwear system. Four cornerstones defined the project; sustainability, availability, comfort and flexibility. The first two relate here to the production, while the last two are coupled to the wearer’s experience of the product.

Two key questions initiated this project. The first question elaborated on the possibility to produce an untraditional material for a new type of product on a circular knitting machine, which is generally used for high speed production of full-width fabrics. The second question explored the possibility to apply the three-layer principle - generally used in sportswear - on footwear. We show that we can answer both these questions positively.

Using an elaborated functional design tool the footwear system was theoretically divided into functional layers; inner, middle and outer, combined with an inner and outer sole. These detachable layers together create a flexible footwear system. A ready-made product, the middle layer with thermal insulating properties, was practically developed, taking use of a heat and water soaking protocol for inducing relaxation in the material and by this air encapsulation.

Keywords: footwear, knitting, three-layer principle, comfort, thermal insulation.

Introduction
Consumption reduction is commonly regarded as profound for achieving sustainability (Allwood, 2006). Talking within a textile context it is for example better to prolong the life span of the T-shirt than buying a new one (Chouinard et al., 2011). The overwhelming focus on consumption studies is on individuals, households and the general public (Newholm and Shaw, 2007). Still investments by companies stand for a...
very large amount of yearly national gross expenditure in many countries. Any purchase of instruments and machinery creates a seismic wave through the economy. Energy must be used in the machine factory. Transfers must be performed for moving the items from the machine plant to the buying company. Oil or electric energy must be produced for this. Raw materials must be produced, for example steel and chemicals or other goods. Old machine parts can be reused and metals be re-melt. New equipment can be placed in geographically better sites than before, minimizing the distance between the place of production and the market. Reduced energy means reduced environmental impacts. Our focus will be when the company is in a situation investigating a new equipment purchase that is needed for the company. Our task is now to see how to produce one of the components in the system by the common circular knitting technology.

Experiments aimed at developing a structure that would have thermally insulating properties and be possible to produce on common circular knitting technology. Experiments included such components as a concrete example of ways to do this. The philosophy is to use both an economical advantage for the company and a positive effect on the environment. The aim is here to give a concrete example of ways to do this. The philosophy is to use existing technology to develop new products. Rethinking the selection of technology for a product and what is possible to do with an already existing assembly means a change in the management of the sustainability profile of the company. We exemplify the former issue by presenting a systemic footwear concept realised by using specialised yarns, and the latter by explicitly showing how to produce one of the components in the system by the common circular knitting technology.

The project is defined by the following four cornerstones;

- **The Comfort aspect includes creating, supporting and maintaining a comfortable microclimate under various kinds of external climate and levels of physical activity.** Comfort embodies more than just a psychological - such as size fit, cushioning (Drez, 1980) etc. These will be of secondary focus here.

- **Flexibility** refers to the footwear system’s ability to be convertible in order to suit changing conditions. For example adapting to changes in level of activity, changing weather conditions from outdoor to indoor, from wet to dry or from dirty to clean.

- **Sustainability** focuses on resource efficiency from the perspective of the company. Striving towards optimizing production processes through minimizing the use of energy and chemicals, as well as reducing the amount of waste produced. Packaging material, stock and transport should also be rationalised in order to minimize storage, space, weight and so on.

- **Availability** focuses on innovative use of existing, accessible and widely distributed production equipment, as well as developing new techniques and applications for these machines. Availability focuses on the development of new knitting techniques on existing equipment rather than development of new machines. This enables production of rare textile substrates needed to its construction. The pattern of interconnecting knitting loops, material and after-treatment, cutting and assembly. Before an elaborated design process was performed, first described.

The Basis for the Product Development

Product development should lead to the realization of the designed object. Here we work according to the idea of Function Product development should lead to the realization of the design process was performed, first described. These are elaborated. Eventually the subfunctions are associated with physical realisation.

Properties of the whole are divided into resultants (i.e. found also among the parts) and emergents (i.e. existing only at the whole-level) with empty intersection, according to the law of Excluded Middle. Gestalt is a valuable tool which can be used to describe the product developed in this project with a continuous change and reorganization of the parts. We define the wholes of the predicted function a decomposition into subfunctions is performed. These are then found - minerals transformed to metals, oil to plastics and so on. These are inherently coupled to emergence (Emmesche et al., 1997).

The Biomechanics of the Foot

The foot can be divided into the rear foot, midfoot and toes, where each has its own special function. The back of the heel bears the bodyweight while standing and also absorbs shock while walking. The convex section of the foot absorbs shock. The toes keep the balance of the foot. The foot functions as one link in a biomechanical kinetic chain (Steindler, 1977), where movement at one joint influences movement at other joints. Disruptions in one part will hit the gait from dual forces, the ground shock of heel strike and the vertical stress of weight from above.

Walking puts up to 1.5 times our bodyweight on our foot, and running three times our bodyweight (Foy et al., 2012, Dixon, 2008). Individual takes between 8000-10 000 steps each day (Da et al., 2006). During walking the foot becomes load-bearing and adapts itself to the terrain. During running the foot changes at the same time the waist and joint area of the foot becomes wider. During running the foot passes through both pronation (appr 25 % of the time) and supination (appr 75%) (Drez, 1980). Then in ready position, and finally in the impact and may affect the gait cycle (Lohman EB et al., 2011).

In most porous insulation, the surrounding air is the gas that is used. Since air is easily moved by convection and pressure differences, an open air space does not work well as insulation. For better insulation values porous insulation is used, it holds the air in place by using small quantities of solid material as a matrix. The solid material is distributed so it occupies as much of the total volume as possible. The heat moves through the material by convection and also heat loss due to conduction. Vacuum provides no atoms and molecules and is a great form for insulation.

Air as Thermal Insulation

Vacuum provides no atoms and molecules and is a great form of insulation. But air is not move by conduction. Since vacuum is difficult to use in clothing, insulation uses the next best approach, which is to approximate a vacuum by minimizing the amount of matter through which the heat can move by convection or radiation.

A too rigid shoe does not provide any greater protection against impact and may affect the gait cycle (Loehman EB et al., 2011).

The Concept(s) of Comfort

Comfort is dependent on the surrounding climate (temperature and humidity), activity and clothing. Comfort can be divided in different subareas, and the following illustrates the concept(s) that follows. **Physio comfort** dependent on physical and physiological factors, and embracing thermophysiological aspects such as the body temperature, blood circulation and breathing. **Socio comfort** dependent on the person, and the environment (ambient temperature, air humidity and air movement), which for a garment and footwear is achieved by using materials that absorb and release water-absorption, wettability and water-transport ability. Added to this are also other sensorial factors such as the sensation of how the fabric feels against the skin. The feeling addresses such as fabric properties like pricking, itching, stiffness or smoothness. The garment fit considers the ergonomics of the clothing, its freedom and comfort and the comfort factor for example in the thermophysiological sensation. As an example a loose fitting garment may be perceived as cool during summertime. On the other hand, comfort from a socio-cultural perspective, which includes fashion styles, emotional colours that may contribute to the consumer’s feeling if the garment is suitable for the occasion etc. This has a subjective nature and is possibly more difficult to measure quantitatively than physio-comfort.
can in most cases slowly diffuse through the plastic (Wulffinghoff, 1999).

Three Layer Principle, Textiles and Footwear

In order to achieve a comfortable micromilide in different weather conditions and for varying activity levels, the layering principle is fundamental. (Ren and Fan, 2004, 2008) Hollow fibres which incorporate small amounts of air into the structure encapsulate air. A study (Kunz and X., 2005) investigated which structural parameters of the 3D hollow fibres are optimal to support ventilation and thus, thermal comfort. In (Wu and Fan, 2008) different types of fibrous battings and their positions were studied and the conclusion reached was that dehygroscopic function was partly or totally lost from the outer layer in direct contact with the ground. In (Long H-R, 1999) the water transfer properties of a three layer sock were studied. It was investigated that the permeability rate is closely related to the porosity within the fabric while the transfer depends mainly upon the water absorption properties of the fibres.

Three-dimensional knits, also called spacer fabrics, have large effects on comfort. The fibre content and structure of the knit, layering, and performance thermoregulation can but be regarded as advanced, and leaning upon our cornerstone of availability we only use 2D knit. Layered footwear were studied by Kuklane et al., 2000. Within the footwear community the perhaps most active field is shoes that fall within the sportswear realm. Here shoes are regarded as the most innovative field, compared to other garments and textile accessories (Thiry, 2008). Recently also socks have experienced fast development (Thiry, 2008) with for example ready-made items direct from machine, seamless toe with protruding parts. Compression functionality (McCurry, 2010) and moisture management (WSA, 2005) have also been active directions for development of functional parts. Still the scientific research literature that directly addresses textile aspects of footwear is limited. Non-direct paths have to be used. Orthopedics and physiotherapy have naturally been interested in footwear (Dai et al., 2005, Drez, 1980). Studies has been performed in a context of prosthetics, (Drew et al., 1998) which provides a controlled study on compression of different sock material and friction between these materials and skin. But it is not immediate how these results can be transferred to the results in the detachable footwear layer or system.

Shoes, development of new footwear concepts, and hosiery have been highly interesting from a military point of view (Wyck, 1992, Rosenblad-Wallin, 1988). Even if this literature is huge and fragmented, and needs to be characterized, it is fundamental to further research. For example, the material of the middle layer can be designed to enclose large volumes of air, which can work as a buffer to temperature shifts.

The outer layer main function is to ensure protection against penetration of wetness and wind, while still being breathable. The outer layer could for example be constructed of a plain-weave, which is connected to a microporous film. The seams of the outer layer must be taped. The middle layer main function is to offer thermal insulation. In order to achieve this, the material of the middle layer can be designed to enclose large volumes of air, which can work as a buffer to temperature shifts.

The inner layer function is to transport moisture away from the body to reach thermophysiological and sensorial comfort. To ensure these properties a fibre with low moisture content must be used. The inner layer is knitted as a bilateral structure, which is connected with distributed knitting loops, the inner layer will act as two socks, hindering the development of blisters as well as more easily transporting moisture away from the foot.

To enable comfort during shifting levels of activity, the footwear must be machine washable. This can be done by the wearer, by adding or excluding units. This way of regulating the micromilide can be more controlled if the footwear is subdivided into detachable layers, where each layer of the footwear incorporates a function.

The project illustrates how the choices made during product development influence a wide range of aspects, individually for the user and in a wider perspective the production, its availability and environmental issues. Eventually all these aspects can be summarized in the four cornerstones that were chosen to frame this project; comfort, flexibility, sustainability and availability.

Development of Shape

Requirements related to the wearer’s experience of comfort and aspects related to the sustainability and availability of the production process were equally important during the development of the footwear system. Several experiments were conducted using different materials and approaches. From this work a footwear shape, meeting the requirements of the various cornerstones in varying degrees evolved.

Footwear System

The footwear system was theoretically subdivided into functional layers: inner, middle and outer layer, together with an inner and outer sole. All the detachable layers together form a flexible footwear system, fig 1. Shape and size of one of the author’s (ACJ) feet were used for modelling the footwear layers.

Distributing Functions in Separate Layers

To enable comfort during shifting levels of activity, the footwear must be machine washable. This can be done by the wearer, by adding or excluding units. This way of regulating the micromilide can be more controlled if the footwear is subdivided into detachable layers, where each layer of the footwear incorporates a function.

The project illustrates how the choices made during product development influence a wide range of aspects, individually for the user and in a wider perspective the production, its availability and environmental issues. Eventually all these aspects can be summarized in the four cornerstones that were chosen to frame this project; comfort, flexibility, sustainability and availability.

Three Layer Principle, Textiles and Footwear

The three layer principle is fundamental in this aspect. The thermal insulation, realised by encapsulation of air to make the wearer to divide the footwear into its functional layers, and through this reach comfort giving optimal microclimate. To dress a foot resembles the challenge related to dressing the body, with the exception that footwear is often exposed to more harsh mechanical strain than most clothing systems and the sole of the footwear is partly in direct contact with the ground. While a functional clothing system consists of detachable layers which can be freely combined, shoes are often equipped with functional materials only incorporated into the shoe. The division of the clothing into detachable functional layers should be possible to be applied to the foot. This would make it possible for the wearer to divide the footwear into its functional layers, and through this reach comfort giving optimal microclimate. Textiles play a prominent role for footwear (Kanakaraj and Priya, 2007) being used as lining, upper materials, backing and reinforcement. Even if definitions are un-sharp, most often footwear is divided into functional layers, where each layer of the footwear incorporates a function. The three layer concept is an example of application of the fundamental decomposition methodology.

The three layer system incorporates layers of materials, each with a specific function, from inner to outer - transport of moisture from the body, thermal insulation and protection against wind and wetness. The layers are separable so that the system can be regulated by the wearer who can add and exclude layers to his comfort. Fundamental in this aspect is the thermal insulation, realised by encapsulation of air to achieve a comfortable micromilide.

The inner sole is flexible and made from rubber, plastic and textile materials. The outer sole is much harder and consists of plastics as main components. Woven and non-woven are the main types of textiles frequently used. Knitwear often has the risk of friction between these materials and skin. But it is not immediate how to transfer these results in the detachable footwear layer or system.

Footwear System

The sole of the footwear is divided into two parts. The inner sole or the footbed, which is located close to the foot, compensates for the differences of the feet, and helps the body into a healthy footwear system while walking. The outer sole is more slippery, which makes it easy to slip into by pulling the rear end of the sole over the heel and fixate it onto the outer layer of the footwear system. In the present study the capacity of the footwear and the following refers to the design and production of that.
The Nordic Textile Journal

The initial experiments were inspired by the Japanese paper folding technique origami (fig. 2). Starting with a rectangular shape (A4) and folding this into three dimensional shaped sketch models, aimed at finding a space filling three-dimensional (3D) shape where its two dimensional (2D) shape tessellates the plane. In this way every loop interconnects the material could be utilised efficiently and the laying of the pattern is made easy as well as that the amount of sewing is reduced. Further test shapes were constructed in textile and modelled as well as that the amount of sewing is reduced. be utilised efficiently and the laying of the pattern is made easy (2D) shape tessellates the plane. In this way the material could be form the pattern for the footprint aimed at achieving a way to communicate how the forthcoming 3D shape would be formed, which is in line with the cornerstone concerning efficient production.

Minimizing the amount of material used to produce one footwear unit, including waste material cut away in the production, as well as utilising a larger percentage of the material, leads to more efficient production, and economizing with materials.

The same shape is used in all the layers of the footwear. This makes the production easier. It also gives the separate layers a common idiom, in spite of the difference in material and structure.

Introductory Production Remarks

Since the circular knitting machines are mainly used for high speed production of full width fabrics, it is a challenge to develop a structure that will enclose air and hold it still inside the textile composite, meanwhile being possible to be produced on this kind of machine.

A circular knitting machine with two needle bars can technically produce a bilateral textile structure without connecting points and thereby the materials can be detached from each other. In order for these two sides of the knitted structure to be separated from each other and thereby be able to encapsulate air, a non-knitting filling yarn can be incorporated between the material layers, separating the two textile units and thereby creating space for the air to fill. The two textile layers are interconnected by knitting loops in selected places to divide the composite into smaller sections. The distance between interconnecting knitting points has to be optimised so that the two material units can be separated enough to encapsulate the porous material, but not become too big and thereby lose its stability. The amount of non-knitting filling yarn that is possible for the machine to handle and lead in between the textile units had to be determined, this also defines how thick composite the machine can produce with this technique.

Knits are characterised by being flexible and stretchable structures. Footwear needs to be flexible to meet the comfort requirements, but also rigid to support the position of the foot and achieve a correct body posture. Therefore the knitted structure had to be modified to, besides being flexible, also offer enough rigidity for a footwear layer. The hypothesis that was tested was to incorporate a yarn within the knitting formation that could pull the composite together and thus make the structure more stable. If the structure could be pulled together by the contraction of a yarn within the knitting formation, the height would increase, creating more space for the filling yarn to expand in and allowing the structure to encapsulate more air per area. This idea could therefore add to the product by both making it rigid as well as increasing its thermal insulation.

Experiments and Results

Circular Knitting Machinery

All experiments were conducted in-house with a double-bedded circular knitting machine OWA 36 with 36 knitting systems, 20 needles per inch, npi, and electronic needle selection. It is equipped with 1872 needles in both the cylinder and dial. The machine speed is 12 rpm. It is imperative that the machine is double-bedded for it to be able to knit a two layer structure. The machine can be programmed either mechanically, or digitally by translating a drawn pattern of knitting loops into binary language (knit or do not knit). In most cases a combination of these two ways, mechanical and digital, is used. To enable the composite to be knitted within a knitting filling material, several adjustments was made on the machine. The adjustments concerned increasing the distance between two needle bars and lowering the knitting systems thread guides to allow the filling material to be lead into the textile structure without interfering with the needles. The loop size and the yarn speed were adjusted individually depending on the task of the knitting system.

Knitting the Composite

Three different patterns were created to experiment with the placement of the interconnecting knitting loops. The patterns were computer drawn. The machine relates to the pattern by reading one pixel as one needle movement.

Depending on the dimension of the knitting loop the pattern has to be adjusted in order to have the right pattern dimensions of the knitted material. The loop measurements cannot be foreseen exactly before the structure is knit, so measurements of the loop dimensions were made on the first finished textile (after heat-treatment). As seen on the picture (fig. 3) the patterns include 20 shape tessellations where every loop interconnected layers, opposed to areas which do not include any interconnect- ing loops. Neither one of these scenarios was optimal. The areas that caused the least amount of problems whilst knitting were areas where the courses either had or did not have interconnected loops exceeding five to ten loops without interruption. This is due to the incorporation of the non-knitting filling yarn. Depending on the number of needles that go up into knitting position, the filling yarn is left without guidance from the needle. If many needles in a row go up, or stay down, both scenarios influence the stability of the filling yarn, risking the filling yarn to intertangle with the needles. Ideally every other needle should go up into knitting position and thus keep the filling yarn on track. On the other hand, to have many binding points in a row on a wale creates no problem since the differ- ence between the two wales are created separately by different knitting systems.

This ended up in a final pattern with no more than five intercon- necting loops or five loops not interconnecting in a row (course). The pattern of interconnecting loops is large on the upperside of the foot where the machine has to knit a two layer structure with a non-knitting filling yarn that is possible for the machine to handle and lead in between the textile layers, opposed to areas which do not include any interconnect- ing loops. As seen on the picture (fig. 3) this pattern includes two different shape tessellations where the majority every loop interconnects the textile layers, opposed to areas which do not include any interconnect- ing loops. Neither one of these scenarios was optimal. The areas that caused the least amount of problems whilst knitting were areas where the courses either had or did not have interconnected loops exceeding five to ten loops without interruption. This is due to the incorporation of the non-knitting filling yarn.

To enable the composite to contract in width and expand in height, a yarn with the ability to contract must be incorporated into the composite. The idea here is to take advantage of the shrinkage property, which most often is regarded as unwanted. Three materials were tested regarding their ability to contract the composite.

The materials were incorporated into the structure in the knitting process and constituted 50% of the back layer of the composite. The materials tested were Lycra/Elastan, wool (40/2) and Pemotex. Pemotex is a variant of Trevira flame-retardant textured filament polyester yarn. It is a bicomponent yarn with a low melt com- ponent that results in a stiffening of the textile surface at the finishing stage.
The aim of the experiment was to see which material that would add the most to the composite's thermal insulation and at the same time stabilise the composite. Lyca is knitted into the structure in an elongated state. When it relaxes from the tension, it pulls the surrounding structure together. The wool is knitted into the structure, and its corresponding composite is subjected to heat. When the wool shrinks, this will contract the composite. Femotex is also knitted into the structure and since it is a heat sensitive bi-component yarn, it will shrink when the temperature reaches beyond the temperature at which it has been fixated (in the expanded state). Thereby it pulls together the rest of the structure in width, and since the composite has no physical restrictions in height, it will expand in that direction, resulting in a thickening of the composite.

After-treatment
Application of heat can be done in different ways, here we used two methods. Experiments were made to evaluate the difference between a) applying heat through puffing steam from an iron set at 200°, and b) with heat application by standardised household washing, at 60° followed by hang drying. Washing thus includes both heat, water and mechanical processing.

The result of the experiments (fig 4) indicates that the washing treatment resulted in the highest degree of contraction in width and the best expansion (fig 5, fig 6) in height. Of the three materials Femotex has the most significant properties in this respect, increasing in height by approximately 100%. Consequently the thermal insulation capacity was doubled.

Cutting and Assembling
The raw material from the knitting machine was cut along the pattern, which is formed by the interconnecting knitting loops. The tight position of the interconnecting knitting loops allowed for the material to be divided without exposing the filling material. Appropriate for this product would be to punch out the pattern parts with a continuous and heated punching-machine. Since all the fibres used in the footwear system are synthetic, the heat from the punch-machine would melt the edges, forming a closed textile edge. This would be desirable in the assembling process, avoiding the filling material from the composite to entangle and cause problems in the assembling process.

Two methods of assembling the footwear were tested, before and after the heat treatment. Finally the former was chosen, since it resulted in a more satisfying shape. The product is shown in fig 7.

The cognitive result of the project is that it has been shown that existing production equipment can be re-used for new products, reaching new markets. By this, machinery can be given prolonged life time in a plant, avoiding the need for environmentally impact- ing investments. The concept of re-using is expanded not only to embrace physical objects and materials but (industrial) processes.

Fig 4: Results from measurements of the composite’s thickness and weight per square meter after its been subjected to three different after-treatments; A: before heat-treatment, B: after-heat treatment, C: after-heat treatment washing.

Fig 5: A: Thermally insulating composite from above, before heat treatment. B: Thermally insulating composite from above, after heat treatment. C: Thermally insulating composite from above, after heat treatment washing.

Fig 6: Cross-section of the composite, before (above) and after (underneath) heat treatment.

Fig 7: The final prototype of the thermally insulating layer included in the footwear concept.

Conclusions
The tangible result of the project is a three layered footwear concept, of which the thermally insulating middle layer was developed and produced on a circular knitting machine. The subdivision of the footwear into three separate and detachable functional units enables it to meet the requirements of thermal comfort. To achieve and maintain thermophysiological comfort the footwear system needs to be convertible, to suit and shifting weather conditions and levels of activity. Adopting the idea of the three layer principle, the footwear concept uses the technique of adding and excluding functional units, and thereby fulfils the requirements of flexibility. In line with the sustainability requirement the footwear’s 3D shape (pattern) is designed to utilise the material effectively in cutting, minimizing the amount of waste and optimizing the production process. Since the pattern of the footwear is visible as a knitted pattern on the textile, the pattern for cutting is an integrated part of the fabric, which makes the cutting process easier. All units of the footwear system origin from the same pattern. High availability is achieved by the possibility to mass-produce the 3D shape on a circular knitting machine. This is an example of a frequently occurring machine within the textile industry. By this an example of rethinking what kind of product that can be produced on a certain machine or in a certain plant is given.

The cognitive result of the project is that it has been shown that existing production equipment can be re-used for new products, reaching new markets. By this, machinery can be given prolonged life time in a plant, avoiding the need for environmentally impact- ing investments. The concept of re-using is expanded not only to embrace physical objects and materials but (industrial) processes. We emphasize the importance of design in realizing sustainability. The immaterial design phase has large consequences for the material usage.

In total we have given one concrete example for the company on how to earn both a higher sustainability profile for itself and win environmental benefits for the world by not buying another machine for mass-production of the same thing.

Naturally what we have presented is just one example using the philosophy of rethinking both choice of technology for a certain product and what is possible to do with a given assembly of machinery. The hope is that it will inspire further endeavour along these lines.

Acknowledgement
Tommy Martinsson, Swedish School of Textiles, is acknowledged for support during the development of the configuration on the circular knitting machine.