Pedagogers syn på laborativ matematikundervisning

Frida Ombert & Gabriella Strandäng
Sammanfattning

Arbetets art: Lärarprogrammet, Grundläggande perspektiv på svenska, matematik, engelska 210 högskolepoäng.
Examensarbete ”Att utforska pedagogisk verksamhet” 15 högskolepoäng i utbildningsvetenskap.

Titel: Pedagogers syn på laborativ matematikundervisning

Engelsk title: Teachers’ views on laboratory mathematics

Nyckelord: Laborativ matematik, verklighetsnära, praktiskt

Författare: Frida Ombert & Gabriella Strandång

Handledare: Gunnar Nilsson

Examinator: Mary-Anne Holfve-Sabel

BAKGRUND: Vi har i vår undersökning tagit upp aktuell forskning kring laborativ matematik. Vi har valt att utgå ifrån konstruktivismen, kognitivism och sociokulturellt perspektiv.

SYFTE: Syftet med undersökningen är att ta reda på några pedagogers syn på laborativ matematikundervisning i förskoleklass till årskurs 6.

METOD: Vi har använt oss av en kvalitativ studie, där vi genomförde vår datasamling genom öppen intervju. Det var sex pedagoger som deltog i vår undersökning.

RESULTAT: I undersökningen har det framkommit att pedagogerna ser stora fördelar med laborativ matematik för elevers inlärning av matematik. Pedagogerna anser att eleverna lär bättre då de får möjlighet att använda alla sina sinnen, de får ökad förståelse när matematiken är kopplad till deras vardag och intresset för matematik ökar när de har rolig. Resultatet av undersökningen visar också på att det fanns mer laborativ matematik ute på skolorna än vi trodde innan men att den typ av undervisning fortfarande kan utvecklas.
Innehållsförteckning

1. Inledning.. 3
2. Syfte ... 4
 2.1 Begreppsförklaring ... 4
3. Bakgrund ... 5
 3.1 Lust att lära matematik ... 5
 3.2 Laborativ matematik ... 6
 3.3 Historia kring laborativ matematik ... 8
 3.4 Studier om matematikkunskaper .. 9
 3.4.1 TIMSS 2007 (Trends in International Mathematics and Science Study) 9
4. Teoretiskt förhållningssätt ... 10
 4.1 Kognitivism ... 10
 4.2 Konstruktivism ... 11
 4.3 Sociokulturellt perspektiv ... 11
5. Metod ... 13
 5.1 Kvalitativ metod .. 13
 5.2 Intervju .. 13
 5.3 Fenomenografi ... 14
 5.4 Urval .. 14
 5.5 Genomförande ... 15
 5.6 Etik ... 16
 5.7 Giltighet och tillförlitlighet ... 16
6. Resultat ... 18
 6.1 Analys .. 18
 6.1.1 Vad innebär laborativ matematik? ... 18
 6.1.2 Vad kan vinnas? ... 18
 6.1.3 Förutsättningar ... 19
 6.1.4 Möjligheter ... 20
 6.1.5 Svårigheter .. 20
 6.2 Sammanfattning analys ... 21
7. Diskussion .. 22
 7.1 Resultatdiskussion ... 22
 7.1.1 Vad innebär laborativ matematik? ... 22
 7.1.2 Vad kan vinnas? ... 22
 7.1.3 Förutsättningar ... 23
 7.1.4 Möjligheter ... 24
 7.1.5 Svårigheter .. 25
 7.2 Metoddiskussion ... 26
 7.3 Didaktiska konsekvenser ... 26
 7.4 Fortsatt forskning ... 27
8. Tack .. 27
9. Referenslista ... 28
Bilaga 1 .. 30
Bilaga 2 .. 31
1. Inledning

2. Syfte
Syftet med undersökningen är att ta reda på några pedagogers syn på laborativ matematikundervisning i förskoleklass till årskurs 6.

Frågeställningar:

- Hur definierar pedagogerna termen laborativ matematik?
- Vilka möjligheter och svårigheter beskriver pedagogerna i arbetet med laborativ matematik?

2.1 Begreppsförklaring
Begreppet laborativ matematik använder vi som ett samlingsbegrepp för undervisning i matematik som sker exempelvis genom att eleverna får möjlighet till att experimentera, undersöka olika problem samt arbeta praktiskt med eller utan hjälpmedel och material. Detta är något som vi även återfinner i Nationalencyklopedin. Där definieras begreppet ”laborativ undervisning” som en undervisning där pedagoger använder sig av praktiska experiment och försök. Vidare nämns även en koppling till John Deweys tankar om ”learning by doing” (Dewey 1999). Begreppet handlar om att undervisningen kombinerar teoretiska och praktiska uppgifter (Nationalencyklopedin 1993, Bd. 12, s. 49).

3. Bakgrund

3.1 Lust att lära matematik

År 2001-2002 sammanställde Skolverket en rapport om elevers lust att lära med fokus på matematik. I rapporten beskriver matematik ofta av elever som något tråkigt och lärobokstyrkt som saknar verklighetsanknytning (Skolverket 2003, s. 10). Hur kommer det sig att eleverna gör det?

I Skolverket (2003, s. 15ff.) redogörs det för att elever från förskoleklass till framförallt tredje klass tycker att matematik är roligt. Det är även under denna period som olika typer av undervisningssätt förekommer i stor utsträckning. Här utgår lärarna ifrån elevernas intressen och omvärld, vilket gör att eleverna får en bättre förståelse för att matematik kan användas i vardagen. Att hela människan behöver vara engagerad i sitt lärande på olika konkreta sätt är något som pedagogerna i de tidigare åldrarna tar tillvara i undervisningen. Eleverna lär med alla sinnen, såsom syn, hörsel och känsel.

När eleverna kommer till år fyra och uppåt visar rapporten (Skolverket 2003, s.19) att undervisningen till största del genomförs utifrån enskilt arbete, i tysthet samt utifrån lärobok. Det är sällan som eleverna arbetar i grupper för att komma fram till olika lösningar på problem. Många elever upplever matematik som att snabbhet går före förståelse och att det är viktigt att räkna så många uppgifter som möjligt på kortast tid. Eleverna behöver även få en undervisning som inger lusten att lära matematik i senare år. I rapporten står det skrivet: ”för att elever skall tycka att det är roligt att lära matematik behöver de se sammanhang och få förståelse” (Skolverket 2003, s. 19).

Styrdokumenten i matematik framhäver vikten av att skolan arbetar på ett sätt som ökar elevernas intresse när det gäller matematik. Detta är en förutsättning för att eleverna skall utveckla lust för ämnet och inse vikten av att förstå matematik. En meningsfull undervisning tar hänsyn till att eleverna måste förstå det som de gör i matematiken. Finns det en förståelse ökar även elevernas lust (Skolverket 2000, s. 26).

Matematik bör läras i ett meningsfullt sammanhang som är kopplat till verkligheten till exempel att kunna betala för sitt lördagsgodis. Detta ger även ett ökat självförtroende för den egna förmågan i matematik, vilket stärks av följande citat: (Skolverket 2003)

Skillnaden ökar markant mellan dem som förstår och får ökad självärvand och dem som inte förstår och så småningom förlorar både lust att lära och tilltron till sin förmåga att lära matematik (s.20).

Citatet visar att utan förståelse blir ämnet inte roligt, vilket kan leda till ett tappat intresse för all typ av matematik. Citatet kan även styrkas av det Malmer (1997, s.42) skriver. Hon menar att genom matematikundervisningen skall pedagogerna hjälpa elever till att skaffa sig
hjälpmedel och verktyg som gör att de lättare kan förstå matematiken. Om eleverna inte kan använda sina hjälpmedel och verktyg i olika situationer blir de genast meningslösa. Pedagogerna måste även hjälpa eleverna att förstå när de skall använda dessa. Om eleverna fått förståelse för hur och när de kan använda sig av olika matematiska hjälpmedel i verkliga situationer ökar också intresset för matematik.

3.2 Laborativ matematik

Malmer har tagit upp ett citat av Anna Kruse som gäller att undervisningen inte behöver vara som den en gång varit, det vill säga att utvecklingen går framåt även i hur undervisningen kan bedrivas. Anna Kruse är legendarisk inom svensk matematikundervisning2.

Men gott vore det i alla fall, om allmänheten kunde vändas från den uppfattningen, att man går i skolan för att läsa och skriva just på det sätt, som man gjort i gångna tider, ty där i ligger en tidsförlust, en kraftförlust, det är säkert. Det är icke sagt, att en sak är bra, därför att man alltid har gjort så. […] Varför skulle vi inte från början lära barnet tankens och intelligensens flygkonst! (Malmer 1997, s.12)

Citatet beskriver hur viktigt det är att låta eleverna upptäcka själva och förstå vad de lär sig. Utvecklingen går framåt i hur undervisningen skall bedrivas, även i ämnet matematik, det behöver inte läras ut på samma sätt som det gjordes färre.

I matematik skall eleven utveckla kunskaper och förståelse som sedan kan användas i vardagslivet. Kunskaper i matematik krävs för att människan skall kunna följa med och ta beslut i samhällets föränderliga situationer (Skolverket 2000, s. 26). Kunskaperna skall främja

1 Gunnar Nilsson handledare Högskolan i Borås, handledning den 17 december 2009.
2 Gunnar Nilsson handledare Högskolan i Borås, handledning den 17 december 2009

6

Malmer (1997, s. 31ff.) skriver att undervisningen skall utgå ifrån elevernas erfarenheter och hjälpa dem att öka deras ordförråd för att de vorbalt skall kunna delta i undervisningen. Undervisningen skall även ta hänsyn till att vi alla lär olika, ju fler tillvägagångssätt desto bättre. För många barn förstärks inlärningen om de själva får delta aktivt och kreativt. Att arbeta laborativt ger stöd till deras logiska tänkande och de kan därmed lättare generalisera för att finna lösningar på problemen. Malmer nämner också att många pedagoger anser att laborativt material hör hemma i de lägre åldrarna och hos de svagare eleverna, vilket minskar arbetssättets status hos eleverna och leder till att en del inte vill använda det. Vidare handlar de olika nivåerna om att pedagogen skapar sig ett nytt sätt att tänka och organisera. Detta kan i vissa fall vara det som är svårtast, många pedagoger saknar den praktiska delen i sin egen utbildning och vet därför inte hur de skall göra. Malmer (1997, s.7) skriver även att en del pedagoger är rädda för att släppa kontrollen över eleverna, vilket leder till att vi tar bort elevers sätt att vara kreativa.

Att diskutera och lära sig kommunicera i matematik bör det läggs stor vikt vid, för att öka elevernas matematik kunskaper. Samtidigt som de tillsammans eller på egen hand löser problem ökar även den språkliga medvetenheten hos eleverna. De kan lättare återberätta hur de tänkt och varför de tänkt som de gjort och eleverna ges då möjlighet att reflekttera över problemet som lösts (Malmer 1997, s. 43). Reflektion hjälper eleverna att utveckla en djupare förståelse, vilket i sin tur leder till ett ökat självförstående och en utvecklad självtillit inom området matematik.

Att vara duktag i matematik möts ofta genom hur många uppgifter eleverna hinner med i stället för vilken kvalité som deras prestation håller. Det borde fokuseras mer på processen kring att arbeta med matematik istället för resultatet och det kan fås genom ett laborativt arbetssätt. Elevers syn på vad som är viktigt i matematik blir felvriden om fokus ligger på antal räknade uppgifter, i stället för att förstå vad det är som de räknar (Malmer 1997, s.44ff.). Undervisningen skall bygga på elevers tidigare förförståelse, erfarenheter och behov. Skolan ansvarar för att främja ett lärande hos varje enskild individ för att denne skall ha möjligheten att tillägna sig kunskaper som gör det möjligt att uppnå målen i grundskolan. I läroplanen (Lpo- 94 2006,) står det att ”skapande arbete och lek är väsentliga delar i det aktiva lärandet”(s.5), vilket uppnås genom ett varierande arbetssätt i undervisningen.

"Språkförståelse och logiskt tänkande i kombination med nyfikenhet, fantasi och kreativitet” (Malmer 1997, s.6). Dessa ord beskriver vad matematik bör handla om. Genom att låta
eleverna arbeta med matematik på detta sätt kan de erövra nya sätt att tänka, vilket gör att matematiken blir något som eleven förstår och kan göra till sitt eget (Malmer 1997, s.23).

När elever skall lära in nya saker har de lättare att bibehålla den nya kunskapen ju fler sinnen som används när de lär. Genom att se vad som händer och samtidigt göra det praktiskt med händerna resulterar i ökad förståelse (Malmer 1999, s.28). För att elever skall veta, vilket språk som skall användas i matematikens värld är det viktigt att eleverna får utbildning i detta. Pedagogerna i skolan borde därför ägna större vikt vid att tala ett matematiskt språk med eleverna. Detta för att det skall bli en självklar del av undervisningen och även en del av hur eleverna kommunicerar matematik med varandra. Genom de matematiska termerna kan även pedagogerna se hur mycket eleverna kan, vilket hjälper dem att veta vad eleverna kan behöva för vidare stötning i sin utveckling inom matematiken (Malmer 1997, s.41).

3.3 Historia kring laborativ matematik

Szendrei (1996, s.422ff) skriver att genom att använda sig av material som är verklighetsanknutet får eleverna en positiv inställning. Det kan i sin tur leda till ökad förståelse för hur matematiken kan användas i vardagen. Laborativt material kan hjälpa eleverna till ökad förståelse inom delar av matematiken som annars kan vara svår att förstå. Vidare skrivs det att vissa laborativa material kan kräva en viss typ av utbildning för att pedagogen skall
behärskas materialet, vilket kan vara negativt om materialet finns men inte kunskapen hos pedagogen.

Concrete materials in the mathematics classroom do not automatically produce either a good or bad effect. A teacher must plan the use of materials in accordance with society’s demands, the language of instruction, and the philosophy of the school (Szendrei 1996, s. 433).

Det bör finnas en tanke bakom den laborativa undervisningen för att det skall leda till inlärning och gynna eleverna.

3.4 Studier om matematikkunskaper
Elevers intresse för matematik sjunker ju äldre eleverna blir, därför har vi valt att ta del av en forskningsstudie, TIMSS 2007, dels för att bredda våra egna kunskaper om studien men även se vad den kommit fram till.

3.4.1 TIMSS 2007 (Trends in International Mathematics and Science Study)

Sveriges deltagande i denna undersökning visar hur det svenska skolsystemet förhåller sig i jämförelse med andra länder. Undersökningen visar att svenska elever presterar något lägre resultat i matematik än genomsnittet i de andra deltagande länderna. Svenska elever presterar förhållandevis bra när det gäller att sammanställa och tolka data, men något sämre i taluppfattning, aritmetik och geometri. Prestationerna är även något sämre när det gäller att använda fakta och begrepp (Skolverket 2008, s. 8).

TIMSS 2007 visar att Sverige bedriver en mer läroboksstyrd undervisning med mer självständigt arbete hos eleverna jämfört med övriga länder i undersökningen. Sverige har även färre matematikundervisningstimer än övriga länder och den största skillnaden på antalet timmar är i år fyra. Skolverket har kommenterat resultatet utifrån TIMSS 2007 och påvisar att det inte går att dra några faktiska slutsatser gällande svenska elevers kunskaper i jämförelse med andra länder, detta för att ländernas läroplaner ser olika ut. Däremot ger det en möjlighet till att jämföra resultaten med andra länder, då alla elever skriver samma prov. TIMSS, som studie, är en undersökning vars innehåll har kompromissats fram för att vara så relevant som möjligt för de deltagande ländernas läroplaner och kursplaner. Utifrån detta mäts elevernas kunskaper och förmågor (Skolverket 2008, s. 4ff.). Sammanfattningsvis kan inga slutsatser dras gällande svenska elevernas matematikkunskaper i år fyra då det var första gången Sverige deltog i studien med just denna årskull.
4. Teoretiskt förhållningssätt

4.1 Kognitivism

Piaget säger att ett intresse präglas både av det yttre och inre hos en elev som lär. Genom att praktiskt genomföra olika moment har eleverna lättare att tillägna sig ny kunskap då de ser att den nya kunskapen kan användas i ett sammanslag, det yttre. Det inre är tanken hos individen vid genomförandet av de olika handlingarna. Många av de metoder som Piaget använder sig av är främst hur vuxna skall kunna hjälpa elever och inte speciellt mycket hur elever skall göra. Det som Piaget framhåver är att elever skall lära genom att själva vara aktiva och att det som skall läras skall utgå ifrån deras intresse och i samspel med andra. Kunskaperna som skapas när barnen är yngre skall ligga till grund för att de skall kunna delta och leva ett aktivt liv i vårt samhälle. Samhället bygger på att människan kan fungera socialt eftersom arbeten sällan utförs enskilt och i tysthet utan sker i social interaktion med andra människor. Om kunskaper som skall läras in isoleras och inte finns i något sammanslag leder det till att det som skall läras in inte blir en del av det vardagliga livet (Jerlang 2007, s. 267f).
4.2 Konstruktivism

An ounce of experience is better than a ton of theory simply because it is only in experience that any theory has vital and verifiable significance (Dewey 1999, s. 144)

Dewey skriver ”we may lead a horse to water we cannot make him drink” (Dewey 1999, s. 26). För att kunna ta till sig ny kunskap måste eleverna vilja lära sig. Pedagogerna kan bara hjälpa och guida eleverna att finna vägarna till kunskap, aldrig påtvinga dem kunskap. Vidare påpekar även Dewey lekens betydelse i barns inlärning och utveckling som individer. Dewey menar att genom leken får barn kunskaper om hur det vardagliga livet ter sig, de förbereder sig inför framtiden (Lindqvist red. 1999, s. 77).

En svårighet, som Dewey talar om, är att pedagoger ibland kan ha svårt att bortse från sig själva, sin egen kunskap och de läromedel som de använder för att komma ner på individens nivå. Dewey skriver vidare, för att lyckas med att komma ner till individens nivå behöver pedagogen ha en vidare syn till att lära ut kunskap än det som står i läroboken. Ju vidare syn på att lära ut nya saker till eleverna som pedagogen har desto lättare är det att finna något som passar alla (Dewey 1999, s. 109ff).

4.3 Sociokulturellt perspektiv

Grundtanken i ett sociokulturellt perspektiv är samspelet mellan en grupp människor och individen (Säljö 2003, s.18). Det är genom kommunikation/interaktion med andra som...
individen tillägnar sig kunskap och färdighet. Vygotskij bygger sin utvecklingsteori utifrån det sociokulturella perspektivet det vill säga, att människan lär i samband med andra. I detta samband har den sociala miljön stor påverkan på hur utvecklingen ser ut (Vygotskij 1999a, s. 20f). Vygotskij menar att om utvecklingen skall ske bör undervisningen utgå från barnets tidigare erfarenheter, behov och intressen. Detta resulterar i att barnet själv blir aktiv i sin inlärning då de kan relatera till det som undervisas och kan se hur de kan användas i vardagen (Bråten 1998, s. 104ff). I skolan finns det inte alltid ett tydligt och klart samband mellan elevernas undervisning och verkliga liv (Säljö 2003, s. 41).

Ett barn får genom kommunikation och delaktighet kunskaper och färdigheter. Det är genom att lyssna på vad andra talar om och hur de föreställer omvärlden som han/hon urskiljer vad som är väsentligt och intressant. Dessa kommunikativa processer är ett naturligt sätt för barnet att lära nya saker och de är centralt i dess utveckling. Det sätt som människan tar till sig kunskaper och färdigheter på är inom ramen för sociokulturella sfären och är skapade och kommunicerade genom kultur (Säljö 2003, s.36f). Vad som är viktigt att påpeka i sammanhang där det sociokulturella perspektivet omnämns är att det samband och den interaktion som människan lär genom finns överallt i omgivningen. Kultur och miljö har en stor påverkan på hur människan utvecklas som individ, eftersom detta påverkar vårt sätt att kommunicera. Kommunikationen, framhäver Vygotskij, har stor betydelse till hur människor samspelet (Vygotskij 1999c, s. 121). Det är också genom språket i lekar och vardagsaktiviteter som barn utvecklar de spontana och vardagliga begreppen, de akademiska begreppen tillägnar de sig exempelvis genom undervisningen i skolan.

"Den närmaste utvecklingszonen" (Vygotskij 1999b, s. 269), är ett begrepp skapat av Vygotskij själv för att förklara det område där lärande är möjligt, dock ligger den lite över barnets egna kognitiva förmåga. Zonen bygger på att det ett barn klarar idag med hjälp kan han/hon klara själv i morgon. Genom det stöd som barnet får från en mer erfaren person eller genom att imitera kan han/hon utföra handlingar som sträcker sig långt utanför den egna förmågan (Lindqvist red. 1999, s. 278).
5. Metod
Under detta avsnitt redogörs undersökningens val av metod, verktyg och ansats. Urval och genomförande förklaras samt en beskrivning på hur vi förhållit oss till de etiska principerna även giltighet och tillförlitlighet redogörs för.

5.1 Kvalitativ metod
Med en kvalitativ metod menas att forskaren skall förstå, tolka eller hitta ett mönster utifrån en frågeställning (Trost 2001, s. 22), snarare än att förklara det som har framkommit. Holme och Solvang (2001, s. 78) menar att ett utmärkande drag för kvalitativa metoder är att fokusera på riklig information om få undersökningsområden, vilka går in på djupet och granskas. Informationen förmedlas sedan via verbala ord. I förgrunden av en undersökning står forskarens tolkning av information, dennes förförståelse och fördomar som på ett nödvändigt sätt präglar varje forskningssituation. Kombinationen av undersökarens värderingar och faktakunskaper är en förutsättning i den konkreta undersökingssituationen för att kunna undersöka fenomenet i en speciell fråga. Däremot under själva analysfasen är det viktigt att skilja dessa två åt så att fördomarna snarare ifrågasätts än att de påverkar slutprodukten (Holme och Solvang 2001, s. 76ff.).

När forskarens syfte är att förstå och sätta sig in i andra personliga upplevelser är kvalitativa metoder att föredra då verktygen är fallstudie, intervju eller samtal, vilket resulterar i att forskaren kommer nära undersökningspersonerna. I en fallstudie undersöks ett fenomen i sin verklighet och gränserna mellan fenomenet och sammanhanget är inte givit (Backman 1998, s. 48f.). Skall undersökaren däremot ta reda på hur undersökningsdeltagarna känner, upplever eller uppfattar ett fenomen bör intervju eller samtal användas (Björkdahl Ordell 2007, s. 194).

Allt eftersom den kvalitativa undersökningen genomförs måste upplägget kunna ändras och vara flexibelt. Detta på grund av två saker, först uppkommer nya erfarenheter i undersökningen under informationsinsamlingen. Frågeställningarna kan upptäckas vara felformulerade eller helt saknas från början. För det andra bör upplägget vara flexibelt då frågor ställs, hur de ställs eller i vilken ordning de ställs (Holme och Solvang 2001, s. 80).

5.2 Intervju
som ett vanligt samtal dock med ett bestämt fokus, där en frågar och den andre svarar (Holme och Solvang 1997, s. 99).

Då intervjun skulle genomföras ville vi få en avspänd situation för att intervjun skulle bli så gynnsam som möjligt. Vi valde att åka till respondenterna för att genomföra intervjun i dennes vardagsmiljö, klassrummet. Inför intervjun talade vi om att det är okej om respondenten tar sig tid för eftertanke inför sina svar i form av tystnad. Vi valde även att belysa att om en fråga repeteras är det för att vi som intervjuar ibland glömmer av, missuppfattar eller inte förställt svaret på frågan och därför ställer om den igen. Det beror inte på respondentens svar utan att det helt enkelt är en miss från intervjuarens sida (Kihlström 2007b, s. 52f). Under intervjun ligger ansvaret hos intervjuaren att intervjuns upplägg är genomförbart, att det finns möjligheter att ställa följdfrågor för att förtydliga vissa saker om det behövs utan att samtalet blir för styrt eller ledande. I en kvalitativ intervju är det respondentens uppfattningar som är av intresse och inte den egna förståelsen. Alla uppfattningar ska olika då vi har olika föreställningar och uppfattningar inom olika områden och i intervjuerna ligger intresset i respondentens svar.

5.3 Fenomenografi

5.4 Urval

Vi har valt att intervjuar sex pedagoger verksamma i grundskolans tidigare år F-6 eftersom det är mot det åldersspannet som vi är utbildade. Urvalet var delvis systematiskt (Holme och

1a arbetar på skolan som vi benämner som skola 1, en landsbygdsskola med 340 elever. Hon är klassföreståndare för år 5 och hon har varit verksam pedagog i tio år. Hennes utbildning är grundläggande lärarutbildning i svenska, matematik och engelska 210 högskolepoäng.

1b arbetar även hon på skola 1, är klassföreståndare för år 4 och har varit verksam i drygt 25 år. Hon började studera till pedagog i början av 1980-talet, direkt efter avslutade gymnasiestudier. Därtill har pedagogen gått en fortbildning inom matematik där en mattestuga med laborativt material skulle skapas som sedan hela skolan kunde använda.

1c är liksom de redan nämnda pedagogerna verksam på skola 1 men arbetar i en förskoleklass. Hon har varit verksam i snart 15 år efter en förskollärarutbildning som hon påbörjade två år efter gymnasiets avslutning. Hon har gått en fortbildningskurs inom matematik och har även fått tillgång till ett stödmaterial, matteplattformen, som är full med idéer och kan användas i förskoleklass.

2a arbetar på skolan som vi benämner som skola 2 som har 155 elever. Hon arbetar i förskoleklass och har gjort det sedan fem år tillbaka då hon var färdig förskolelärare. Hon har under den senaste terminen, tillsammans med de andra pedagogerna på skolan, deltagit i ett projekt där fokus ligger på laborativ matematik.

2b arbetar även hon på skola 2 och är klassföreståndare i år 6. Hon började studera på lärarprogrammet med inriktning matematik och naturkunskap direkt efter avslutade gymnasiestudier och har varit verksam pedagog i sju år. Liksom pedagog 2a har hon varit deltagande i ett matteprojekt den senaste terminen.

3a är den enda av de intervjuade som arbetar på den skola som vi benämner som skola 3, en skola med 55 elever och åldersintegrerade klasser. Hon har varit verksam i tio år efter att ha läst en lärarutbildning med matematik och NO-inriktning. Under sina verksamma år har hon gått flera vidareutbildningar där hon är matematikansvarig på skolan och för tillfället går hon ett lärarlyft i grundläggande aritmetik som hela skolan deltar i.

5.5 Genomförande

När frågorna var färdiga diskuterade vi dem med vår handledare, sedan genomfördes en provintervju för att vi skulle få en uppfattning om de frågor vi ville ställa gav svar på vårt syfte. Efter denna intervju gjorde vi några små ändringar tillsammans med handledaren för att förtydliga vissa av frågorna så vi kunde få ett så bra material att analysera som möjligt.

Vi genomförde tre intervjuer vardera där vi åkte ut till respondenterna på respektive persons arbetsplats. Vi satt snett mot varandra under intervjun för att få en mer avspänd miljö för respondenterna. Intervjuerna spelades in med mp3 spelare och mobiltelefon. Utifrån dessa
inspelningar skrevs sedan alla intervjuerna ner ordagrant, även de frågor som ställs. Fördelen med att ha intervjuerna inspelade är möjligheten att gå tillbaka till intervjuvisaren vid osäkerhet om hur respondenten tolkats. På detta sätt försvarar inte heller viktiga delar genom att de finns inspelade och inte bara i våra anteckningar eller minne.

Efter att intervjuerna är nedskrivna satt vi med våra egna intervjuer var för sig och försökte hitta mönster i svaren men även likheter och skillnader vilket är nödvändigt då det görs en fenomenografisk undersökning (Kihlström 2007a, s.156ff.). Efter vi gjort detta var för sig satte vi oss tillsammans för att argumentera för vad det var vi hade fått fram och vad som var relevant för undersökningen. Slutligen kom vi fram till hur sammanställningen skulle göras och analysen genomfördes. Därefter framarbetades diskussionsavsnittet.

5.6 Etik

För att kunna utföra studien på ett korrekt sätt har vi tagit del av Vetenskapsrådets forskningsetiska principer (Vetenskapsrådet 2002, s. 5ff.). Dessa delas upp i fyra huvudkrav; informationskravet, samtyckeskravet, konfidentialitetskravet och nyttjandekravet. Vilka vi har uppfyllt på följande sätt.

Efter kontakt med deltagarna som skulle medverka i vår undersökning skickade vi ett informationsbrev till dem (Bilaga 1). Detta brev innehåller information om vår undersöknings syfte, vilken utbildning vi går, vilken kunskap vi hoppas komma att utveckla med hjälp av vår forskning samt att deras deltagande helt och hället är frivilligt och att de därmed kan avbryta sin medverkan när som helst.

Som nämndes tidigare var deltagandet frivilligt, deltagaren själv har rätten att bestämma över sin medverkan i undersökningen. Om deltagaren skulle vilja avbryta skall intervjuaren inte påverka detta beslut, avbrytandet skall inte heller leda till några negativa konsekvenser för den deltagande (Vetenskapsrådet 2002, s. 9ff.). Vi redogjorde även för att deltagandet är helt anonymt. Deltagarna blev även tillfrågade om det gick bra att spela in intervjun och att den efter transkription skulle förstöras. Vi talade även om att intervjuerna endast skall användas till undersöknings ändamål, vilket är att utveckla våra egna kunskaper inom laborativ matematik.

5.7 Giltighet och tillförlitlighet

När något skall undersökas bör forskaren fundera över studiens validitet, det vill säga dess giltighet. Giltigheten i en studie handlar om att forskaren verkligen studerar det som han/hon tänkt undersöka (Kihlström 2007c, s. 231). För att kontrollera sig själv som undersökare kan följande fråga ställas: Kan jag visa att jag har undersökt det som jag har?

Ytterligare ett begrepp som forskaren skall ta hänsyn till under studiens gång är dess reliabilitet, vilket handlar om studiens tillförlitlighet. Är studiens resultat trovärdiga (Kihlström 2007c, s. 231)? För att öka vår undersökningss trovärdighet har alla intervjuer spelats in på mp3 spelare och sedan skrivits ner. Nedskrivningen innehåller de svar från respondenten men även de frågor som intervjuaren har ställt. Detta för att öka trovärdigheten (Kihlström 2007c, s.232)

Om två personer genomför en undersökning tillsammans kan studiens tillförlitlighet ökas genom att båda personerna genomför intervjuer ihop (Kihlström 2007c, s. 232). Genomförs intervjuer av två undersökare samtidigt minskar riskerna med att undersöknas egna tolkningar påverkar resultatet. Denna undersökning har genomförts på så sätt att vi intervjuat en och en då det var långa avstånd att köra mellan de olika respondenterna som medverkat. Dock tycker vi att trovärdigheten är acceptabel då vi genomfört en provintervju och spelade in alla intervjuer till analyserandet av respondentens svar. Denna inspelning gjorde att båda två fick möjlighet att lyssna på alla sex genomförda intervjuerna trots att endast en genomförde intervjun. Analysen gjordes först var för sig och sedan tillsammans vilket gav oss möjlighet att bolla vår analys fram och tillbaka.
6. Resultat

6.1 Analys

6.1.1 Vad innebär laborativ matematik?

En annan aspekt med laborativ matematik, som flera av pedagogerna tog upp, är möjligheten att använda alla sinnen vid inlärning. Pedagog 2b påpekar att alla inte är gjorda för att ta in ny kunskap genom att lyssna eller se. De behöver istället få ”ta och pröva, se och göra.” Hon menar då att eleverna bygger upp egna ”känslor i händerna” genom att använda flera sinnen under inlärningen något som gynnar elevens förståelse. Detta pratar även pedagog 1b om och hon menar att eleverna kan ”befästa kunskapen bättre genom att pröva, learning by doing.”

För pedagog 2a fanns det inga begränsningar i det material som kan användas vid laborativ matematik. Pedagog 2b tycker att ”allt som man kan ta på” är laborativ matematik. Båda två sammanfattar detta med att ”det är endast fantasin som sätter gränser”. Dock läggs stort fokus under intervjuerna på att precisera det material som kan användas. Bland annat nämns små lådor med kulor i att räkna. Legobitar att göra mönster av eller logiska block som har olika former. Inköpta eller egentillverkade kort med bilder på som de berättar räknesagor kring. Lådor med olika typer av laborativt material, en del inköpt och andra saker som är egenproducerat. Vardagsmaterial så som mätband, klockor, miniräknare, våg och låtsaspengar får gärna finnas tillgängligt i klassrummet. Olika plockmaterial som kan representera olika matematiska begrepp och spel kan användas för att träna tabeller och positionssystem. En sammanställning av pedagogernas exempel på laborativt material blir omfattande och styrker det pedagog 2a och 2b nämner ovan.

6.1.2 Vad kan vinnas?

De intervjuade pedagogerna menar att diskussioner som uppstår i gruppen vid laborativ matematik kan skapa inre bilder hos eleverna. Dessa inre bilder är sedan en viktig del i en fördjupad förståelse för det matematiska språket. Det kan i sin tur ge flera vägar för eleverna när det skall lösa ett problem något som pedagog 2b tycker extra på. Hon uttrycker sig som att det är en fördel då ”en del behöver ha de minnesbilderna med sig av att ha gjort det här för de kan inte bara kolla på en bild och sen komma ihåg”. Här gör pedagog 2b en jämförelse med hur elever kommer ihåg skillnaden mellan kvadratcentimeter och kvadratdecimeter. Hon menar att har eleverna fått se detta på ett konkret sätt är det lättare för dem att komma ihåg det till nästa gång då de har en inre bild för hur det ser ut. Pedagog 2a ser även en annan fördel med diskussioner. Då hon tror att det kan få eleverna känna att deras äsikter är betydelsefulla.

Pedagog 2a ser en fördel med laborativ matematik då det kan främja de elever som ”har svårt för att ta till sig matten och som inte förstår mattspråket och som inte förstår vad de gör utan
bara försöker lära sig ett mönster och så göra det mönstret”. Vidare trodde hon att det är lätt att glömma av att använda korrekta matematiska begrepp inför eleverna. ”I alla fall inte jag, att jag inte alltid använder rätt begrepp och det är något som jag behöver utveckla.” Hon menar ändå att de matematiska termerna med fördel kan användas tillsammans med laborativ matematik då eleverna kanske inte förstår vad som sägs men vad som görs. ”Förr eller senare kopplar eleverna praktik med termer och det tror jag underlättar eleverna längre upp i skolåren”. Ett positivt resultat av laborativ matematik enligt pedagog 2a.

6.1.3 Förutsättningar
Pedagogernas egna matematik kunskaper ser majoriteten av de intervjuade pedagogerna som en förutsättning för att kunna arbeta laborativt. Genom stöttnings från skolan har pedagogerna 1a, 1c, 2a, 2b och 3a fått större möjlighet och blivit uppmuntrande att använda ett laborativt arbetsätt i ämnet matematik. Det har givit dem mer kunskap om hur de kan arbeta laborativt och även givit dem redskapen så de praktiskt kan genomföra arbetet. Pedagog 3a anser att detta gynnar eleverna då det viktigaste för henne är att eleverna når målen.

Alla lär vi olika och ibland kan det hjälpa att få en annan inlärningsstrategi. Det bygger på att jag som lärare har en bred kunskap både om ämnet matematik och om hur undervisningen kan genomföras, vilket jag tycker man underhåller genom vidareutbildningar. (3a)

Pedagog 2b ser en svårighet i laborativ matematik om pedagogen inte har tillräckliga kunskaper.

Det är ju svårt att bara värka fram saker man behöver ju mängder utav tips och provar man något så kanske man inte tycker att det var bra så man behöver ju ständigt mata på med nya tips och så. (2b)

Brist på kunskap tror även pedagog 2a kan vara en anledning till att laborativ matematik inte förekommer, framförallt i de senare skolåren. Hon tror att de pedagogerna med äldre elever:

[...] inte riktigt känner att de behärskar det. Och de vet inte riktigt vad de skall använda för plockis eller hur de skall göra och hur de skall göra det roligt. För det är klart att vi med förskoleklass eller ettorna vi kan prata om glassar som åts upp samtidigt som att Nackdelarna kan kanske ibland vara att man med de små barnen kan ha svårt att föra över det till mattespråket, de ser vad som hände men kan inte riktigt prata mattespråk. (2a)

Pedagogen bör vara flexibla och kunna blanda laborativ matematik med övningar i räkneboken. ”Det finns alltid ett mål med det som görs” säger pedagog 3a, hon menar att det genomsyrar hela hennes arbetsätt oavsett om det handlar om arbete i räknebok eller laborativ matematik. Lika viktigt är det att använda en blandning av planerade och impulsiva övningar, vilket alla pedagoger, utom 1b, i undersökningen gör. De impulsiva övningarna ser de som positiva då de ger möjlighet att fånga matematiken i de vardagliga situationer som de uppstår i, vilket påverkar elevernas inlärning på ett positivt sätt.

Pedagog 1b undviker helt planering av laborativ matematik, vilket hon motiverar med ”jag har lärt mig att man inte stressa fram kunskap för då får man bakslag”. Huruvida detta även gäller hennes arbete i räknebok framkommer inte men hon ser arbetet i räkneboken som grundläggande för matematikundervisningen. Pedagogerna 1c och 2a arbetar i förskoleklass och använder aldrig räknebok men eventuellt kan arbetsskrift förekomma sporadiskt. Istället fångar de matematiken där den dyker upp eller medvetet för in matematiken i vardagliga
situationer. Fånga matematiken där den finns gör även 3a, 1a och 2b. Varför pedagog 2b gör detta förklarar hon med:

För ibland märker man att eleverna inte förstår och då får man komma på en ny väg att förklara och då får man ju bara använda fantasin och göra något som finns nära till hands. Annars är det ganska mycket så att jag tänker på vad jag vill få in i varje arbetsområde men det är som sagt så många praktiska saker som påverkar så det blir inte alltid som man tänkt sig. Utan det är ofta så att jag har något i bakhuvudet som jag använder när tillfälle ges. (2b)

6.1.4 Möjligheter

"Fördelarna väger helt klart över iällafall” svarar pedagog 3a spontant på frågan om det finns några fördelar eller nackdelar med laborativ matematik. Alla de intervjuade pedagogerna har en positiv bild av laborativ matematik. Framför allt trycker de på att ett laborativt arbetssätt gör det lättare att få barnen intresserade då de ser matematikens betydelse i vardagen. Då blir det även lättare att förstå den abstrakta matematiken och genom laborationer blir chansen större att fler elever förstår. "Här gynnas ytterligheterna” säger pedagog 1a, "både de som har lätt för matematik och de som har svårigheter”. Vidare säger pedagogen att det ges större möjlighet att individanpassa genom laborativ matematik och göra det konkret för varje enskild elev. Pedagogerna trycker även på att matematik genom laborativa arbetssätt kan kopplas till andra ämnen. Då ser eleverna att matematiken inte enbart finns i räkneboken utan är en del av det vardagliga livet.

De intervjuade pedagogerna är eniga om att eleverna måste se mening och lust i matematik. Genom att använda vardagliga situationer och laborativ matematik kan eleverna se sambandet mellan ämnet och vardagen och därmed finna en glädje med matematik. Även ämnesintegriering kan enligt pedagogerna ha en positiv inverkan i elevernas förståelse och intresse då de ser sambandet mellan olika ämnen. Att kombinera idrott och hälsa med matematik är ett sätt och pedagog 1b påpekar att "röra på sig samtidigt som man lär sig är något som ökar intresset".

6.1.5 Svårigheter

Ofta när arbetet är laborativt ser inte eleverna att det är matematik som de håller på med, det blir "rolig matematik där man kanske inte alltid tänker på att det är matte man håller på med” enligt pedagog 2b. Det kan då bli svårt för eleverna att ta till sig de matematiska termerna. Även föräldrar kan ha svårt att uppfatta den laborativa matematiken som en del av ämnet matematik. De har inte erfarenhet av matematik på detta sätt, vilket pedagog 1c sett som ett stort problem redan i förskoleklass. Även pedagog 2b anser sig ha detta problem men då i år 6 där hon måste vara extra tydlig med att det är matematik även om inte räkneboken har använts, vilket pedagog 1a också nämner.

6.2 Sammanfattning analys

Det som framkommit i undersökningen är att laborativ matematik kan leda till flera olika saker. Pedagogerna ser stora fördelar med laborativ matematik för elevers inlärning av matematik. De anser att eleverna lär bättre då de får möjlighet att använda alla sina sinnen, de får ökad förståelse när matematiken är kopplad till deras vardag och intresset för matematik ökar när de har rolig. Nedan listar vi de saker som togs upp mest:

- känslor i händerna
- ta och pröva, se och göra
- använda alla sinnen
- ta tillvara på tillfällen som dyker upp
- inre bilder
- kopplar praktik till begrepp.
7. Diskussion
Under detta avsnitt kommer resultatet och metoden att diskuteras. Vidare kommer didaktiska konsekvenser och vidare forskning att beskrivas.

7.1 Resultatdiskussion

7.1.1 Vad innebär laborativ matematik?

7.1.2 Vad kan vinnas?

Att under laborativ matematik i undervisningen skapa eller ta tillvara på diskussioner som uppstår kan hjälpa eleven att skapa inre bilder och befästa kunskap. Dessa inre bilder är sedan viktiga för att ge en ökad förståelse för det matematiska språket menar de intervjuade pedagogerna. Säljö (2003, s.18) styrker detta, han menar att det är genom kommunikation/interaktion med andra som individen tillägnar sig kunskap och färdighet. Även Vygotskij anser att den sociala miljön har stor påverkan på hur utvecklingen hos människan ser ut (Lindqvist red. 1999, s. 20f). Både Säljö och Vygotskij stärker pedagogernas syn på att eleven...
lär i diskussion med andra. Vår egen erfarenhet av diskussioner kring matematik är relativt liten. Därför har det varit intressant att ta del av dels pedagogernas syn men även litteratur kring detta för att vidga vår egen syn. Vi tror att mycket kan vinnas genom matematiska diskussioner i klassrummet.

Något som pedagogerna tog upp som en fördel var att den laborativa matematiken kan främja inlärningen av det matematiska språket framför allt för de svagare eleverna. Szendrei (1996, s.422ff) menar att laborativt material kan hjälpa eleverna till ökad förståelse inom delar i matematiken som annars kan vara svår att förstå så som överföringen av det matematiska språket. Malmer (1997, s.41) menar att det är viktigt att eleverna vet vilket språk som skall användas i matematikens värld och även får utbildning i detta. Hon anser att pedagogerna bör ägna mer vikt vid ett matematiskt språk mellan eleverna. Det skulle i sin tur göra det lättare för pedagogerna att se hur mycket eleverna förstår och sedan se vilka som behöver extra stötning. ”Språkförståelse och logiskt tänkande och logiskt tänkande i kombination med nyfikenhet, fantasi och kreativitet” (Malmer 1997, s.6). Det kanske låter som en hög med fina ord men för oss är det just vad grunden för matematikundervisning är. Tyvärr tror vi att pedagoger ofta glömmer av detta sätt att se på hur elever befäster kunskaper. Vi blev till viss del motiverade då pedagog 2a tog upp att de matematiska termerna med fördel kan användas med laborativ matematik. Även om eleverna ibland inte förstår det som sägs kan de förstå det som görs. Detta kopplar vi samman med vad Vygotskij säger: att det ett barn klarar idag med hjälp kan han/hon klara själv i morgon (Lindqvist red. 1999, s. 271).

7.1.3 Förutsättningar
Pedagogerna talar om att det bara är fantasin som sätter stopp i arbetet med laborativ matematik. De menar även att det inte finns några begränsningar i valet av material att använda. Szendrei (1996, s.418) talar om att det finns olika typer av laborativt material, det verklighetsnära materialet som kan knytas an till elevernas egen verklighet och det material som är framtaget endast för skolsituationer. Används materialet som är framtaget endast för skolsituationer behöver pedagogerna vara säkra på vilka kunskaper det är som de vill utveckla hos eleverna. Detta är en nackdel som vi ser att speciellt framtaget material kan medföra. Vi tror inte att laborativ matematik kräver färdigt material utan att det material som behövs kan skapas av pedagogen eller eleverna själva.

Flera av de intervjuade ser att god matematikkunskap hos pedagogen som en förutsättning för att kunna arbeta laborativt oavsett ålder på eleverna. De nämner också att pedagogen bör vara flexibel och kunna blanda laborativ matematik med övningar i räkneboken. Pedagog 2b påpekar att ”man behöver ju ständig mata på med nya tips”, vilket vi håller med om. Ingen pedagog blir fullvärd bara av att arbeta i klassrummet utan även verksamma pedagoger behöver underhålla sina kunskaper. Vi tror detta är en förutsättning för att kunna arbeta flexibelt och laborativt. Finns den matematiska kunskapen som en stabil grund som underhålls tror vi att pedagogerna i större utsträckning vågar arbeta utanför de traditionella ramarna, som vi sett finnas i matematikundervisningen. Malmer (1999, s.29) styrker att en undervisning som är mer flexibel och öppen för ett laborativt innehåll underlättar för de elever som har matematiksvårigheter och gagnar även resterande elever.

A teacher must plan the use of materials in accordance with society’s demands, the language of instruction, and the philosophy of the school (Szendrei 1996, s. 433).
Vi tolkar detta citat som att det finns flera olika pusselbitar som skall falla på plats för att undervisningen skall bli så bra som möjligt. Allt för att de kunskaper som eleverna tillägnar sig i skolan skall kunna tas med ut och användas i samhället som stort.

7.1.4 Möjligheter

7.1.5 Svårigheter

An ounce of experience is better than a ton of theory simply because it is only in experience that any theory has vital and verifiable significance (Dewey 1999, s. 144, r. 24)

Detta citat talar tydligt om hur kunskap befästs genom att pröva teorier, då det blir lättare att förstå hur olika saker fungerar. Vidare säger Dewey att lärandeprocessen inte slutar för att vi slutar skolan, det vi lär oss i skolan ska leda fram till att vi kan lära oss ännu mer i vårt fortsatta liv (Dewey 1999, s. 50f).
7.2 Metoddiskussion

De sex pedagoger som var med i undersökningen kontaktades genom personlig kontakt och eller telefon. Tre av dem valdes ut då vi visste att de varit delaktiga i en studiecirkel kring matematik. De resterande tre kände vi inte mer än att de var matematiklärare och visste således inte i förväg vilken erfarenhet av laborativ matematik som de hade. Alla de sex pedagoger som deltog i undersökningen har olika lång erfarenhet inom läraryrket, yrkeserfarenheten ligger mellan 5-25 år. Vårt intresse med denna undersökning var att ta reda på hur pedagogerna ser på laborativ matematik. Vi ville även höra om de tycker att det finns möjligheter respektive svårigheter med att använda laborativ matematik i undervisningen. I efterhand är vi nöjda med vår metod och ser inte att vi kunde gjort det på annat sätt för att nå ett bättre resultat.

Svårigheten med denna typ av undersökning är frågan om den kan representera hela den svenska lärarkåren när den har ett så pass lågt deltagande. Vi skulle påstå att dessa sex pedagoger som bidragit till vårt resultat representerar en liten del av den svenska lärarkåren. Vidare kan inga generella slutsatser dras för vad som stämmer överens med lärarkåren som helhet vilket vi inte heller varit ute efter. Vårt syfte med undersökningen var att få en så rik belysning på ämnet laborativ matematik som möjligt. Detta resultat gäller alltså endast de sex pedagoger som undersökningen bygger på tillsammans med vårt val av litteratur och egna tankar.

Vi har i undersökningsanstängt oss av en öppen kvalitativ intervju där vi själva valt ut de frågor som använts. Frågorna var uppbyggda för att svara på våra frågeställningar. Vad pedagogerna ansåg att laborativ matematik var, hur det kan användas i undervisningen och vad det finns för möjligheter respektive svårigheter med laborativ matematik. Vi diskuterade även intervjufrågorna ihop med vår handledare för att giltigheten skulle bli högre (Kihlström 2007c, s. 231). Det var sedan dessa frågor som styrde våra intervjuer. Följfrågor ställdes till de i förväg bestämda frågorna i de fall där vi inte fått svar på den fråga som vi ställt. Intervjuerna genomförde vi en och en, vilket sänkte tillförlitligheten något. Intervjuerna spelades in för att få en tillräcklig tillförlitlighet för en undersökning som denna. För att tillförlitligheten skulle bli så hög som möjligt och för att minska risken att få med eventuella egna tolkningar har vi först analyserat dem var för sig och sedan tillsammans. Genom att resultatet kopplades till den bakgrund som använts i undersökningen, kunde vi hänvisa till vad de olika forskarna tyckte i relation till det som framkommit genom pedagogernas intervjuvar.

7.3 Didaktiska konsekvenser

Då vi tagit del av sex pedagogers syn på laborativ matematik har vi kommit fram till att det finns mer laborativ matematik ute på skolorna än vi trott. Dock anser vi att det behövs mer då vi själva inte har sett detta i stor utsträckning under vår verksamhetsförlagda utbildning. Genom det har vi kommit fram till hur viktigt det är för elever att lära sig ett meningsfullt sammanhang. I läroplanen (Lpo-94 2006, s. 3-7) talas det om att undervisningen skall vara individanpassad och på individens egen nivå. För att uppnå detta tror vi att pedagogerna ute på skolorna skulle kunna få stöd och hjälp av varandra. Vi tycker att det är viktigt med de pedagogiska diskussionerna för att undervisningen skall kunna bli så bra som möjligt för eleverna. Att utnyttja de kompetenser som finns bland kollegorna gör att pedagogerna kan få hjälp där de känner att deras egen kompetens inte är lika stor.

De svårigheter som vi stött på vad gäller laborativ matematik är att tiden till att planera inte finns. Vår egen tanke kring detta är om det verkligen är tiden som inte finns eller om det är sättet att planera på som sätter stopp. Om planeringen omdisponeras kan det finnas en möjlighet att skapa tid för planering av laborativa lektioner med matematik. Ytterligare en svårighet var att elever och föräldrar inte alltid ser att det är matematik som undervisas om den är laborativ. Vi tror att om föräldrar bjuds in för att se undervisning, vad eleverna lär och vilka mål i läroplanen som de når upp till minskar motsättningar och ifrågasättning till denna typ av undervisning.

Avslutningsvis vill vi påstå att det bara är fantasin och kreativiteten som sätter stopp för vilken undervisning som vi kommer bedriva när vi är färdiga.

7.4 Fortsatt forskning
Allt eftersom arbetet fortskridit har nya tankar kring laborativ matematik uppkommit hos oss. Nedan listar vi frågor som vi tycker skulle vara intressanta för fortsatt forskning:

- Hur kan arbetet med laborativ matematik utvecklas så det passar alla?
- Hur kan elevernas egna ansvar till inlärning involveras i laborativ matematik?
- Vilken typ av stöttning skulle behövas för att genomföra laborativ matematikundervisning?
- Hur ser eleverna på den laborativa matematiken?

8. Tack
Vi vill avsluta med att tacka de pedagoger som ställt upp under våra intervjuer, utan er hade vårt arbete inte varit genomförbart. Vi vill även tacka vår handledare Gunnar Nilsson som med sina gedigna kunskaper har guidat och hjälpt oss finna nya vägar för att nå vårt mål.
9. Referenslista

Nationalencyklopedin (1993). Bd. 12, s. 49. Höganäs: Bra Böcker

Bilaga 1

Högskolan i Borås
Institutionen för pedagogik
Kurs: Examensarbete

Informationsbrev
2009-11-05

Examensarbete kring laborativ matematik.

Våra namn är Frida Ombert och Gabriella Strandäng och vi genomför just nu en empirisk studie kring ämnet matematik i grundskolans tidigare år. Som student vid högskolan i Borås (7:e terminen) ingår det att genomföra ett examensarbete och vi har då valt att studera laborativ matematik.

Syftet med studien är att undersöka hur verksamma inom skolan ser på ämnet matematik och området laborativ matematik och hur de förhåller sig till detta i sin undervisning. Målet är därmed att slutligen sammanställa svaren kring ämnet i en vetenskapligrapport.

Vi intervjuar dig i rollen som klasslärare som undervisar i ämnet matematik. Enligt vetenskapsrådets forskningsetiska principer kommer Er medverkan endast baseras kring Er svar i intervjun, namn och skola kommer inte att publiceras i rapporten. Vetenskapsrådets forskningsetiska principer finns att ladda ned på www.vr.se.

Genom att delta i undersökningen bidrar Du till att utveckla våra kunskaper som blivande pedagoger, och vi är därför oerhört tacksamma för Er medverkan.

Tack på förhand/

Frida Ombert och Gabriella Strandäng

Vid frågor, kontakta Gabriella 0704-33 87 20.
Bilaga 2

Intervjufrågor

1. Vad är laborativ matematik för dig?

2. Varför används laborativ matematik?

3. Använder du dig utav laborativ matematik?

4. Vad behövs för att arbeta med laborativ matematik?

5. Vilka praktiska svårigheter kan finnas med laborativ matematik?

6. Vilka möjligheter ser du med laborativ matematik?

7. Vilka elever gynnas respektive missgynnas utav ett laborativt arbetssätt?

8. Tycker du att du fått stöd från skolan för att arbeta med laborativ matematik?

9. Hur kan man öka elevers intresse för matematik?

10. Hur mycket använder du dig utav laborativ matematik kontra räkneuppgifter i läroboken?

11. Hur ser din praktiska planering ut gällande laborativ matematik?