Change search
Refine search result
1234567 1 - 50 of 1010
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Oldest first
  • Newest first
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Abbaszadeh, A
    et al.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Effect of extraction conditions on yield and purity of citrus pectin by sulfuric and hydrochloric acids2009Conference paper (Refereed)
  • 2. Abedinifar, Sorahi
    et al.
    Karimi, Keikhosro
    University of Borås, School of Engineering.
    Khanahmadi, Morteza
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Ethanol production by Mucor indicus and Rhizapus oryzae from rice straw by separate hydrolysis and fermentation2009In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 33, no 5, 828-833 p.Article in journal (Refereed)
    Abstract [en]

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and beta-glucosidase enzymes were first investigated and their best performance obtained at 45 degrees C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g (1) sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g (1)) and untreated straw (0.46 g g(-1)). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L-1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g(-1) ethanol, 0.11-0.17 g g(-1) biomass, and 0.04-0.06 g g(-1) glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g(-1) ethanol, 0.04-0.10 g g(-1) biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g(-1). This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g(-1), respectively. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

  • 3. Aboh, I. J. Kwame
    et al.
    Henriksson, Dag
    University of Borås, School of Engineering.
    Laursen, Jens
    Lundin, Magnus
    University of Borås, School of Engineering.
    Gormon Ofosu, Francis
    Pind, Niels
    Selin Lindgren, Eva
    University of Borås, School of Engineering.
    Wahnström, Tomas
    University of Borås, School of Engineering.
    Identification of Aerosol Particle Sources in Semi-rural of Kwabenya, near Accra, Ghana2008Conference paper (Other academic)
  • 4. Aboh, I. J. Kwame
    et al.
    Henriksson, Dag
    University of Borås, School of Engineering.
    Laursen, Jens
    Selin Lindgren, Eva
    Lundin, Magnus
    University of Borås, School of Engineering.
    Pind, Niels
    Wahnström, Tomas
    University of Borås, School of Engineering.
    Air Pollution and Meteorology: Ambient PM2.5 Aerosol Origin Studied by Factor Analysis of Elemental Composition Related to Wind Data2008Conference paper (Other academic)
  • 5. Abtahi, F.
    et al.
    Gyllesten, I. C.
    Lindecrantz, Kaj
    University of Borås, School of Engineering.
    Seoane, Fernando
    University of Borås, School of Engineering.
    Software Tool for Analysis of Breathing Related Errors in Transthoracic Electrical Bioimpedance Spectroscopy Measurements2012Conference paper (Refereed)
  • 6. Abtahi, F
    et al.
    Seoane, F
    University of Borås, School of Engineering.
    Lindecrantz, K
    University of Borås, School of Engineering.
    Electrical bioimpedance spectroscopy in time-variant systems: Is undersampling always a problem?2014In: Journal of Electrical Bioimpedance, ISSN 1891-5469, E-ISSN 1891-5469, Vol. 5, no 1, 28-33 p.Article in journal (Refereed)
    Abstract [en]

    During the last decades, Electrical Bioimpedance Spectroscopy (EBIS) has been applied mainly by using the frequency-sweep technique, across a range of many different applications. Traditionally, the tissue under study is considered to be time-invariant and dynamic changes of tissue activity are ignored by treating the changes as a noise source. A new trend in EBIS is simultaneous electrical stimulation with several frequencies, through the application of a multi-sine, rectangular or other waveform. This method can provide measurements fast enough to sample dynamic changes of different tissues, such as cardiac muscle. This high sampling rate comes at a price of reduction in SNR and the increase in complexity of devices. Although the frequency-sweep technique is often inadequate for monitoring the dynamic changes in a variant system, it can be used successfully in applications focused on the time-invariant or slowly-variant part of a system. However, in order to successfully use frequency-sweep EBIS for monitoring time-variant systems, it is paramount to consider the effects of aliasing and especially the folding of higher frequencies, on the desired frequency e.g. DC level. This paper discusses sub-Nyquist sampling of thoracic EBIS measurements and its application in the case of monitoring pulmonary oedema. It is concluded that by considering aliasing, and with proper implementation of smoothing filters, as well as by using random sampling, frequency-sweep EBIS can be used for assessing time-invariant or slowly-variant properties of time-variant biological systems, even in the presence of aliasing. In general, undersampling is not always a problem, but does always require proper consideration.

  • 7. Abtahi, Farhad
    et al.
    Aslamy, Benjamin
    Boujabir, I
    Seoane, Fernando
    University of Borås, School of Health Science.
    Lindecrantz, Kaj
    University of Borås, School of Engineering.
    An Affordable ECG and Respiration Monitoring System Based on Raspberry PI and ADAS1000: First Step towards Homecare Applications2014In: 16th Nordic-Baltic Conference on Biomedical Engineering / [ed] Mindedal H., Persson M., Springer International Publishing , 2014, 5-8 p.Conference paper (Refereed)
    Abstract [en]

    Homecare is a potential solution for problems associated with an aging population. This may involve several physiological measurements, and hence a flexible but affordable measurement device is needed. In this work, we have designed an ADAS1000-based four-lead electrocardiogram (ECG) and respiration monitoring system. It has been implemented using Raspberry PI as a platform for homecare applications. ADuM chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 and IEC 60950 for patient safety. The result proved the potential of Raspberry PI for the design of a compact, affordable, and medically safe measurement device. Further work involves developing a more flexible software for collecting measurements from different devices (measuring, e.g., blood pressure, weight, impedance spectroscopy, blood glucose) through Bluetooth or user input and integrating them into a cloud-based homecare system.

  • 8. Abtahi, Zhohreh
    et al.
    Millati, Ria
    Niklasson, Claes
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Ethanol production by Mucor indicus at high glucose and ethanol concentrations2010In: Minerva biotecnologica (Testo stampato), ISSN 1120-4826, E-ISSN 1827-160X, Vol. 22, no 3-4, 83-89 p.Article in journal (Refereed)
    Abstract [en]

    Mucor indicus was cultivated under aerobic and anaerobic conditions to study its tolerance against high concentration of glucose up to 350 g/L and ethanol up to 120 g/L present in the medium. The fungus could grow well even in 350 g/L glucose and produce ethanol, but it was able to assimilate the entire glucose when its concentration was less than 200 g/L. On the other hand, M. indicus produced ethanol as the main product with yield and concentration up to 0.45 g/g and 73 g/L, respectively, while glycerol, its only major byproduct, was produced up to 24 g/L. However, the fungus was not so tolerant against exogenously added ethanol, and it could not grow with more than 40 g/L added ethanol to the culture. Under aerobic conditions, M. indicus displayed different morphology, switching from long filamentous to yeast-like growth forms by increasing initial glucose concentration. This implies that yeast-like growth can be induced by growing M. indicus at high glucose concentration. Under anaerobic conditions, only one yeast-like form was observed.

  • 9.
    Adekunle, K.
    et al.
    University of Borås, School of Engineering.
    Cho, S.-W.
    University of Borås, School of Engineering.
    Ketzscher, R.
    Skrifvars, M.
    University of Borås, School of Engineering.
    Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications2012In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 124, no 6, 4530-4541 p.Article in journal (Refereed)
    Abstract [en]

    Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non-woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid-plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy.

  • 10.
    Adekunle, K.
    et al.
    University of Borås, School of Engineering.
    Cho, S.-W.
    University of Borås, School of Engineering.
    Patzelt, C.
    Blomfeldt, T.
    Skrifvars, M.
    University of Borås, School of Engineering.
    Impact and flexural properties of flax fabrics and Lyocell Fiber reinforced bio-based thermoset for automotive and structural applications2012Conference paper (Refereed)
  • 11.
    Adekunle, K.
    et al.
    University of Borås, School of Engineering.
    Ghoreishi, R.
    Ehsani, M.
    Cho, S.-W.
    University of Borås, School of Engineering.
    Skrifvars, M.
    University of Borås, School of Engineering.
    Jute fiber reinforced methacrylated soy bean oil based thermoset composites prepared by vacuum injection molding technique2012In: Journal of Biobased Materials and Bioenergy, ISSN 1556-6560, E-ISSN 1556-6579, Vol. 6, no 2, 172-177 p.Article in journal (Refereed)
    Abstract [en]

    Bio-based composites based on soybean oil thermoset resin were manufactured with vacuum injection molding technique. Methacrylated soybean oil (MMSO) was processed with vacuum injection molding technique without blending with styrene. The composites produced had comparatively good mechanical properties like jute composite reinforced acrylated epoxidised soybean oil (AESO) resin blended with styrene. Although the tensile strength of the jute reinforced AESO composites are slightly higher than the jute reinforced MMSO composites which was attributed to blending of AESO with styrene. However, the difference in Youngs' modulus was negligible because they have approximately equal stiffness between 2.6 GPa and 2.8 GPa. The jute reinforced AESO composites showed relatively higher flexural strengths and moduli than the MMSO counterparts. This difference was also attributed to the blending of AESO with reactive diluent such as styrene. In order to determine the dimensional stability of the composite manufactured, water absorption test was carried out and the conclusion was that the moisture uptake of the jute reinforced composites was the same, this was expected.

  • 12.
    Adekunle, Kayode
    University of Borås, School of Engineering.
    Bio-based Composites from Soybean Oil Thermosets and Natural Fibers2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In order to reduce over-dependency on fossil fuels and to create an environment that is free of non-degradable plastics, and most importantly to reduce greenhouse gas emission, bio-based products are being developed from renewable resources through intense research to substitute conventional petrochemical-based plastics with renewable alternatives and to replace synthetic fibers with natural fibers. Many authors have done quite a lot of work on synthesizing polymers from renewable origin. Polylactic acid (PLA) has been developed and characterized, and it was found that it has enormous potential and can serve as an alternative to conventional thermoplastics in many applications. Modification of the plant oil triglycerides has been discussed by many authors, and research is still going on in this area. The challenge is how to make these renewable polymers more competitive in the market, and if possible to make them 100% bio-based. There is also a major disadvantage to using a bio-based polymer from plant oils because of the high viscosity, which makes impregnation of fibers difficult. Although natural fibers are hydrophilic in nature, the problem of compatibility with the hydrophobic matrix must be solved; however, the viscosity of the bio-based resin from plant oils will complicate the situation even more. This is why many authors have reported blending of the renewable thermoset resin with styrene. In the process of solving one problem, i.e reducing the viscosity of the renewable thermoset resin by blending with reactive diluents such as styrene, another problem which we intended to solve at the initial stage is invariably being created by using a volatile organic solvent like styrene. The solution to this cycle of problems is to synthesize a thermoset resin from plant oils which will have lower viscosity, and at the same time have higher levels of functionality. This will increase the crosslinking density, and they can be cured at room temperature or relatively low temperature. In view of the above considerations, the work included in this thesis has provided a reasonable solution to the compounded problems highlighted above. Three types of bio-based thermoset resins were synthesized and characterized using NMR, DSC, TGA, and FT-IR, and their processability was studied. The three resins were subsequently reinforced with natural fibers (woven and non-woven), glass fibers, and Lyocell fiber and the resulting natural fiber composites were characterized by mechanical, dynamic mechanical, impact, and SEM analyses. These composites can be used extensively in the automotive industry, particularly for the interior components, and also in the construction and furniture industries. Methacrylated soybean oil (MSO), methacrylic anhydride-modified soybean oil (MMSO), and acetic anhydride-modified soybean oil (AMSO) were found to be suitable for manufacture of composites because of their lower viscosity. The MMSO and MSO resins were found to be promising materials because composites manufactured by using them as a matrix showed very good mechanical properties. The MMSO resin can completely wet a fiber without the addition of styrene. It has the highest number of methacrylates per triglyceride and high crosslink density.

  • 13.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Cho, Sung-Woo
    University of Borås, School of Engineering.
    Patzelt, Christian
    Blomfeldt, Thomas
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset2011In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 30, no 8, 685-697 p.Article in journal (Refereed)
    Abstract [en]

    A bio-based thermoset resin was reinforced with flax fabrics and Lyocell fiber. The effect of different weave architectures was studied with four flax fabrics with different architectures: plain, twill (two different types), and dobby. The effect of the outer ply thickness was studied and characterized with flexural and impact testing. Composites manufactured with plain weave reinforcement had the best mechanical properties. The tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength were 280 MPa, 32 GPa, 250 MPa, 25 GPa, and 75 kJ/m2, respectively. Reinforcements with twill-weave architecture did not impart appreciable flexural strength or flexural modulus even when the outer thickness was increased. Plain- and dobby (basket woven style)-weave architectures gave better reinforcing effects and the flexural properties increased with an increase in outer thickness.Water absorption properties of the composites were studied and it was observed that the hybridization with Lyocell fiber reduced the water uptake. Fieldemission scanning electron microscopy was used to study the micro-structural properties of the composites.

  • 14.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Ketzscher, Richard
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    High performance natural fibre hybrid composites based on biobased thermoset resins for use in technical applications2009Conference paper (Other academic)
    Abstract [en]

    Health related issues, stringent environmental protection policies, search for cost effective and alternative materials and quest for renewability, sustainability and high performance materials for technical applications has led to an intense research in manufacturing biobased composites which are based on renewable thermosetting resins and natural fibres. The combination of biobased thermosetting resins with two different natural fibre reinforcements could lead to improved mechanical properties of the composite. Biobased thermoset polymers are comparable to the synthetic thermosetting polymers from petrochemicals. In this study, two different biobased resins were used as matrix and both non woven flax fibre and woven flax fabric were combined as reinforcements. The composites were made by compression moulding process. The fibres were hand laid-up and impregnation was done manually. The curing temperature was 170°С and at 40 bar. The stacking sequence of the fibres was in different orientations such as 0º, +45º and 90º. The manufactured hybrid composites have high tensile strength and stiffness and the flexural strength and modulus was also high. These composites can compete favourably with glass fibre reinforced composites in terms of strength and stiffness.1, 2 A tensile strength of about 119 MPa and Young’s modulus of 13.8 GPa was achieved, while the flexural strength and modulus is about 201 MPa and 24 GPa respectively. For the purpose of comparison, composites were made with the combination of woven fabric and e-glass fibre. One ply of an e-glass fibre mat was put in the mid-plane and this increased the tensile strength considerably up to 168 MPa. Some of the composites were made with the resin blended with styrene and the results show a higher modulus.

  • 15.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Patzelt, Christian
    Kalantar, Adib
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Mechanical properties of renewable soyean oil thermoset reinforced with jute fabricsand lyocell fiber2011Conference paper (Refereed)
  • 16.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Patzelt, Christian
    Kalantar, Adib
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Mechanical and Viscoelastic Properties of Soybean Oil Thermoset Reinforced with Jute Fabrics and Carded Lyocell Fiber2011In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 122, no 5, 2855-2863 p.Article in journal (Refereed)
    Abstract [en]

    Composites and hybrid composites were manufactured from renewable materials based on jute fibers, regenerated cellulose fibers (Lyocell), and thermosetting polymer from soybean oil. Three different types of jute fabrics with biaxial weave architecture but different surface weights, and carded Lyocell fiber were used as reinforcements. Hybrid composites were also manufactured by combining the jute reinforcements with the Lyocell. The Lyocell composite was found to have better mechanical properties than other composites. It has tensile strength and modulus of about 144 MPa and 18 GPa, respectively. The jute composites also have relatively good mechanical properties, as their tensile strengths and moduli were found to be between 65 and 84 MPa, and between 14 and 19 GPa, respectively. The Lyocell-reinforced composite showed the highest flexural strength and modulus, of about 217 MPa and 13 GPa, respectively. In all cases, the hybrid composites in this study showed improved mechanical properties but lower storage modulus. The Lyocell fiber gave the highest impact strength of about 35 kJ/m2, which could be a result of its morphology. Dynamic mechanical analysis showed that the Lyocell reinforced composite has the best viscoelastic properties.

  • 17.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthesis of reactive soybean oils for use as thermoset resins in composites.2007Conference paper (Refereed)
  • 18.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Bakare, Fatimat
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Bio-based thermoset resins from soybean and linseed oils for structural composites2011Conference paper (Refereed)
  • 19.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Biobased Composites Prepared by Compression Molding with a Novel Thermoset Resin from Soybean Oil and a Natural-Fiber Reinforcement2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 116, no 3, 1759-1765 p.Article in journal (Refereed)
    Abstract [en]

    Biobased composites were manufactured with a compression-molding technique. Novel thermoset resins from soybean oil were used as a matrix, and flax fibers were used as reinforcements. The air-laid fibers were stacked randomly, the woven fabrics were stacked crosswise (0/90 ), and impregnation was performed manually. The fiber/resin ratio was 60 : 40. The prepared biobased composites were characterized by impact and flexural testing. Scanning electron microscopy of knife-cut cross sections of the specimens was also done to investigate the fiber–matrix interface. Thermogravimetric analysis of the composites was carried out to provide indications of thermal stability. Three resins from soybean oil [methacrylated soybean oil, methacrylic anhydride modified soybean oil (MMSO), and acetic anhydride modified soybean oil] were used as matrices. The impact strength of the composites with MMSO resin reinforced with air-laid flax fibers was 24 kJ/m2, whereas that of the MMSO resin reinforced with woven flax fabric was between 24 and 29 kJ/m2. The flexural strength of the MMSO resin reinforced with air-laid flax fibers was between 83 and 118 MPa, and the flexural modulus was between 4 and 6 GPa, whereas the flexural strength of the MMSO resin reinforced with woven fabric was between 90 and 110 MPa, and the flexural modulus was between 4.87 and 6.1 GPa.

  • 20.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthesis of reactive soybean oils for use as a biobased thermoset resins in structural natural fiber composites2009In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 115, no 6, 3137-3145 p.Article in journal (Refereed)
    Abstract [en]

    Biobased thermosets resins were synthesized by functionalizing the triglycerides of epoxidized soybean oil with methacrylic acid, acetyl anhydride, and methacrylic anhydride. The obtained resins were characterized with FTIR, 1H-NMR, and 13C-NMR spectroscopy to confirm the functionalization reactions and the extent of epoxy conversion. The viscosities of the methacrylated soybean oil resins were also measured for the purpose of being used as a matrix in composite applications. The cross-linking capability was estimated by UV and thermally initiated curing experiments, and by DSC analysis regarding the degree of crosslinking. The modifications were successful because up to 97% conversion of epoxy group were achieved leaving only 2.2% of unreacted epoxy groups, which was confirmed by 1H-NMR. The 13C-NMR confirms the ratio of acetate to methacrylate methyl group to be 1 : 1. The viscosities of the methacrylated soybean oil (MSO) and methacrylic anhydride modified soybean oil (MMSO) were 0.2 and 0.48 Pas, respectively, which indicates that they can be used in resin transfer molding process.

  • 21.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthetic modification of reactive soybean oils for use as biobased thermoset resins in structural natural fiber composites2008In: Polymer Preprints, ISSN 0551-4657, Vol. 49, no 1, 279- p.Article in journal (Refereed)
  • 22.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Preparation of biobased composites using novel thermoset polymers from soybean oil and a natural fibre reinforcement2009Conference paper (Other academic)
    Abstract [en]

    Health related issues, stringent environmental protection policies, search for cost effective and alternative materials, crave for renewability and sustainability and quest for high performance materials for structural applications give the motivation for research in polymer composites and material science. Due to the health, safety and environmental concerns over the conventional synthetic materials and the legislation against their usage both in domestic and industrial applications, alternatives sources that will be comparable in properties are being sought. There is an emerging market for biodegradable polymers which is expected to increase substantially in the coming years.[1] Preparation of Composites Airlaid and woven flax fibre mats were first treated with 4% sodium hydroxide solution for one hour and then washed with plenty of water. This was done in order to remove any residual impurities. The fibres were dried at room temperature for 24 hr and then dried in a vacuum oven for 1hr at a temperature of 105°С. The 8 sheets of the fibre were hand laid cross- wisely and the impregnation was done manually. The fibre/ resin ratio was about 60% to 40%. Methacrylated soybean oil, methacrylic anhydride and acetic anhydride modified soybean oil were the synthesized matrices used. The compression moulding was done at a temperature of 170°С for 5 min at 40bar. Characterisations The tensile testing was performed based on an ISO-test method for tensile tests on plastic materials. The Charpy impact strength of unnotched specimens was evaluated in accordance with ISO 179 using a Zwick test instrument and scanning electron microscopy analysis was done on the fractured specimens. The composites showed various mechanical properties, having impact strengths between 24 and 63 kJ/m² and tensile strength up to 51MPa.

  • 23.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Biobased Composites Prepared by Compression Moulding using a Novel Thermoset Resin from Soybean oil and a Natural Fibre Reinforcement2009Conference paper (Other academic)
    Abstract [en]

    Biobased composites were manufactured by using a compression moulding technique. Novel thermoset resins from soybean oil were used as matrix while flax fibres were used as reinforcement. The airlaid fibres were stacked randomly while woven fabrics were stacked crosswisely (90°) and impregnation was done manually. The fibre/ resin ratio was 60% to 40%.

  • 24.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthesis of reactive soybean oils for use as biobased thermoset resins in structural natural fibre composites2008Conference paper (Refereed)
  • 25.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthetic modification of reactive soybean oils for use as biobased thermoset resins in structural natural fiber composites2008Conference paper (Other academic)
  • 26.
    Ahlström, Peter
    et al.
    University of Borås, School of Engineering.
    Aim, Karel
    Dohrn, Ralf
    Elliott, J Richard
    Jackson, George
    Jaubert, Jean Noël
    Rebello de A. Macedo, Maria Eugénia
    Pokki, Juha-Pekka
    Reczey, Kati
    Victorov, Alexey
    Fele Zilnik, Ljudmila
    Economou, Ioannis
    A Survey of the Role of Thermodynamics and Transport Properties in ChE University Education in Europe and the USA2010In: Chemical Engineering Education, ISSN 0009-2479, Vol. 44, no 1, 35-43 p.Article in journal (Refereed)
    Abstract [en]

    Thermodynamics and Transport Properties (TTP) is a central subject in the majority of chemical engineering curricula worldwide and it is thus of interest to know how it is taught today in various countries if chemical engineering education is to be improved. A survey of graduate thermodynamics education in the USA was performed a few years ago by Visco et al. [1] but as far as we know no systematic study of the undergraduate thermodynamics education has been performed, at least in recent years. In the present study, a survey about TTP education in Europe and the USA is presented. Results were obtained from nearly twenty different European countries and the USA and in total answers from about 150 universities were used for this study. The study is performed under the auspices of the Working Party of Thermodynamics and Transport Properties of the European Federation of Chemical Engineering. The survey was performed using a web based surveying system for which invitations were sent out to the universities by local representatives who were responsible for one or more countries each. Of the universities that answered more than 70 % offer BSc education 65 % offer MSc education and 55 % offer PhD education. Most universities offer at least two courses of thermodynamics. The following discussion is mainly based on the first two (undergraduate) courses reported. Half of these are taught to chemical engineers exclusively whereas the rest are taught with other branches of engineering, mainly mechanical and / or process engineering. In general two sets of course lengths were observed, corresponding either to a full semester of full time studies or to quarter of a semester. Most courses are centered around lectures and exercise classes with little or no laboratory work whereas home assignments are given in the vast majority (70-80 %) of the courses. The first course is mainly centered around the first and second law of thermodynamics whereas the second course is frequently more concentrated on phase equilibria. Both of these courses are mainly comprising of classical thermodynamics whereas the molecular interpretation often is touched upon. An analysis of the differences between thermodynamics education in Europe and the USA in presently being undertaken and results from this will also be presented. An investigation of the use of thermodynamics within industry is also on-going within the Working Party and results will be reported in the near future. [1] S.K.Dube, D.P. Visco, Chem. Eng. Ed., 2005, 258-263.

  • 27.
    Ahlström, Peter
    et al.
    University of Borås, School of Engineering.
    Aim, Karel
    Dohrn, Ralf
    Elliott, J. Richard
    Jackson, George
    Jaubert, Jean-Noel
    Rebello de A. Macedo, Maria Eugénia
    Pokki, Juha-Pekka
    Reczey, Kati
    Victorov, Alexey
    Fele Zilnik, Ljudmila
    Economou, Ioannis
    A Survey of Thermodynamics and Transport Properties in Chemical Engineering Education in Europe and the USA2008In: Proceedings of the 100th Annual Meeting of the American Institute for Chemical Engineering, 2008Conference paper (Refereed)
  • 28.
    Ahlström, Peter
    et al.
    University of Borås, School of Engineering.
    Gebäck, Tobias
    University of Borås, School of Engineering.
    Johansson, Erik
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Water absorption in polymers2010Conference paper (Other academic)
    Abstract [en]

    In this work two different examples of water absorbtion in polymers are studied by Monte Carlo simulations. Both of them are of large technical and commercial impotance. The first example is the water absorption in polyethylene cables where the water absorption plays a crucial role in the degradation of the cable insulation and thus should be as low as possible. The second example is bio-based superabsorbents made from denatured protein where water absorption capability is the prime desired property. Methods Gibbs Ensemble Monte Carlo simulations [1] were used to study the hydration of polymers. All simulations are performed with two boxes, one of which is filled with water at the start of the simulation, whereas the other contains polymer molecules and possible ions. The polymer molecules are not allowed to swap boxes whereas the water molecules are allowed to do so thus constituting an osmotic Gibbs ensemble [2]. For the polyethylene a connectivity-altering algorithm was used whereas the protein molecules were simulated using a side-chain regrowth model in addition to traditional Monte Carlo moves. For the polyethylene, the TraPPE [3] force field was used and the protein molecules, the Amber force field [4] was used. Water was modelled using simple point charge models [5]. Electrostatic interactions are treated using Ewald summation methods. The protein molecules were of different amino acid compositions and in different conformations, e.g., β-turns and random coils obtained using the amorphous cell method[6]. Studies were made with different degrees of charging on, e.g., lysine side chains mimicking different ionization states. Results The studies of polyethylene revealed the importance of ions left from the polymerisation catalyst for the absorbtion of water and the concomitant degradation of polyethylene cable insulation. Also the absorption properties of the protein molecules is strongly related to the presence of charged groups and fully charged protein molecules absorb large amounts of water. However, neither native nor denatured protein molecules show superabsorbing properties (i.e. absorbing hundreds of times their own mass) as they show in experimental studies and the reasons for this discrepancy will be discussed. References 1. A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). 2. E. Johansson, K. Bolton, D.N. Theodorou, P. Ahlström, J. Chem. Phys., 126, 224902 (2007). 3. M.G. Martin, and J.I. Siepmann, J. Phys. Chem. B, 103, 4508-4517 (1999). 4. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman (1995). J. Am. Chem. Soc. 117, 5179–5197. 5. H. J. C. Berendsen, J. P. M. Postma and W. F. van Gunsteren, in Intermolecular Forces, B. Pullman, ed. (Reidel, Dordrecht, 1981) p. 331; H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). 6. D.N. Theodorou, U.W. Suter, Macromolecules, 18, 1467 (1985).

  • 29.
    Ahlström, Peter
    et al.
    University of Borås, School of Engineering.
    Moodley, Suren
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Ramjugernath, D.
    University of Borås, School of Engineering.
    Computer Simulations of Vapor-Liquid-Liquid Equilibria Involving Hydrocarbons and Water2008In: Proceedings of the 100th Annual Meeting of the American Institute for Chemical Engineering, 2008, CHPC National Meeting, Durban, South Africa, December 9-10, 2008, AlChe Annual Meeting, Philadelphia, November 15-21, 2008, 2008Conference paper (Other academic)
  • 30. Akbari, H.
    et al.
    Karimi, K
    University of Borås, School of Engineering.
    Lundin, M
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Optimization of baker's yeast drying in industrial continuous fluidized-bed dryer2012In: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 90, no 1, 52-57 p.Article in journal (Refereed)
    Abstract [en]

    Instant active dry baker's yeast is a well-known product widely used for leavening of bread, produced by fermentation, and usually dried by hot air to 94–96% dry matter content. Multi-stage fluidized bed drying process is a commercial effective method for yeast drying. In this work, optimum operating parameters of an industrial continuous fluidized bed dryer for the production of instant active dry yeast were investigated. The dryer contained four zones separated with moving weirs. The operating conditions such as temperature, loading rate of compressed yeast granules, and hot air humidity had direct effects on both yeast activity and viability. The most important factors that affected the quality of the product were loading rate and the operational temperature in each zone on the bed. Optimization was performed for three loading rates of the feed to the dryer, using response surface methodology for the experimental design. The most significant factor was shown to be the loading rate with mean fermentation activity values of 620, 652, and 646 cm3 CO2/h for 300, 350, and 400 kg/h loading rates, respectively. The data analysis resulted in an optimal operating point at a loading rate of 350 kg/h and temperatures of zones 1, 2, 3, and 4 controlled at 33, 31, 31, and 29 °C, respectively. The best activity value was predicted as 668 ± 18 cm3 CO2/h, and confirmation experiments resulted in 660 ± 10 cm3 CO2/h. At the same operating point, the average viability of the cells was predicted as 74.8 ± 3.7% and confirmed as 76.4 ± 0.6%. Compared with the normal operating conditions at the plant, the optimization resulted in more than 12% and 27% improvement in the yeast activity and viability, respectively.

  • 31. Akbari, H.
    et al.
    Karimi, K.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Optimization of baker´s yeast drying in industrial continuous fluidized-bed dryer2008Conference paper (Refereed)
  • 32.
    Akinbomi, Julius
    et al.
    University of Borås, School of Engineering.
    Brandberg, Tomas
    University of Borås, School of Engineering.
    Sanni, Adebayo
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad
    University of Borås, School of Engineering.
    Development and dissemination strategies for accelerating biogas production in Nigeria2014In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 9, no 3, 5707-5737 p.Article in journal (Refereed)
    Abstract [en]

    Following the worsening energy crisis of unreliable electricity and unaffordable petroleum products coupled with the increase number of poverty-stricken people in Nigeria, the populace is desperately in need of cheap alternative energy supplies that will replace or complement the existing energy sources. Previous efforts by the government in tackling the challenge by citizenship sensitization of the need for introduction of biofuel into the country’s energy mix have not yielded the expected results because of a lack of sustained government effort. In light of the shortcomings, this study assesses the current potential of available biomass feedstock for biogas production in Nigeria, and further proposes appropriate biogas plants, depending on feedstock type and quantity, for the six geopolitical zones in Nigeria. Besides, the study proposes government-driven biogas development systems that could be effectively used to harness, using biogas technology, the estimated 270 TWh of potential electrical energy from 181 million tonnes of available biomass, in the advancement of electricity generation and consequent improvement of welfare in Nigeria.

  • 33.
    Akinbomi, Julius
    et al.
    University of Borås, School of Engineering.
    Brandberg, Tomas
    University of Borås, School of Engineering.
    Sanni, Sikiru A.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Development and Dissemination Strategies for Accelerating Biogas Production in Nigeria2014In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 9, no 3Article in journal (Refereed)
    Abstract [en]

    Following the worsening energy crisis of unreliable electricity and unaffordable petroleum products coupled with the increase number of poverty-stricken people in Nigeria, the populace is desperately in need of cheap alternative energy supplies that will replace or complement the existing energy sources. Previous efforts by the government in tackling the challenge by citizenship sensitization of the need for introduction of biofuel into the country’s energy mix have not yielded the expected results because of a lack of sustained government effort. In light of the shortcomings, this study assesses the current potential of available biomass feedstock for biogas production in Nigeria, and further proposes appropriate biogas plants, depending on feedstock type and quantity, for the six geopolitical zones in Nigeria. Besides, the study proposes government-driven biogas development systems that could be effectively used to harness, using biogas technology, the estimated 270 TWh of potential electrical energy from 181 million tonnes of available biomass, in the advancement of electricity generation and consequent improvement of welfare in Nigeria.

  • 34. Ali, Majid
    et al.
    Bashir, Tariq
    University of Borås, School of Engineering.
    Persson, Nils-Krister
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Optimization of oCVD Process for the Production of Conductive Fibers2011Conference paper (Other academic)
    Abstract [en]

    Electro active textile fibers are key components in smart and interactive textile applications. In our previous study, we produced poly(3,4-ethylenedioxythiophene) (PEDOT) coat edviscose fibers by using oxidative chemical vapordeposition (OCVD) technique. We tried FeCl3 as oxidant and found optimum reaction conditions at which better electrical as well as mechanical properties of conductive fibers could be achieved.

  • 35. Ali, Majid
    et al.
    Bashir, Tariq
    University of Borås, School of Engineering.
    Persson, Nils-Krister
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Stretch Sensing Properties of PEDOT Coated Conductive Yarns Produced by OCVD Process2011Conference paper (Refereed)
  • 36. Alinezhad, S.
    et al.
    Mirabdollah, A.
    Forgács, Gergely
    University of Borås, School of Engineering.
    Feuk-Lagerstedt, Elisabeth
    University of Borås, School of Engineering.
    Sárvári Horváth, Ilona
    University of Borås, School of Engineering.
    Expression of keratinase gene in Bacillus megaterium using an expression vector of pHIS1525.SPlipA and utilization of the resulting recombinant strain for chicken feather degradation prior to biogas production2009Conference paper (Other academic)
    Abstract [en]

    An increasing quantity of chickens is being utilized annually in the poultry industry, producing a huge volume of chicken feather waste which presents a high quality supply of keratin. Keratinases possessing high level of keratinolytic activity on insoluble keratin play a crucial role in hydrolyzing chicken feathers. Ever since the discovery of proteolytic ability as well as water solubility of keratinase, many industrial processes regarding keratinase application have been developed. A recently invented application to handle poultry waste is to utilize feathers for biogas production. Obviously, large amount of keratinase is required to break down the keratin prior to further conversion to biogas. Previously, several researches have shown that certain bacteria are able to produce keratinase but it is still a challenge to find out which bacteria is the most reliable source for the production with high efficiency. These challenges gave rise to the molecular biologists to bring the focus on gene cloning to develop recombinant strains resulting in overproduction of keratinase. Over the course of various cloning and expression experiments of similar proteins, it was found that Bacillus megaterium could be a susceptible host cell for keratinase production. In our study, the keratinase gene from the chromosomal DNA of Bacillus licheniformis ATCC®53757 was PCR amplified and subsequently cloned into Bacillus megaterium expression vector, pHIS1525.SPlipA. Bacillus megaterium ATCC®14945 strain was transformed with the recombinant plasmid, pKERHIS1525.SPlipA. The KER gene was expressed under xylose inducible promoter, and the product was then purified using Ni-NTA affinity chromatography. After 18 h of incubation an extracellular keratinase activity of 29U ml-1 was achieved (one unit of activity was determined as the amount of enzyme required to an increase of 0.01 in A420 after 30 min of incubation at 37°C). The recombinant strain was further examined for feather degradation using intact chicken feather waste as carbon source. The chopped chicken feathers were partially degraded by the recombinant strain after three days of incubation and the total macroscopic digestion was ultimately observed after seven days resulting in a yellowish peptide rich fermentation broth. The biogas potential of the hydrolysate will be compared with that of untreated feathers by performing anaerobic batch digestion experiments.

  • 37.
    Al-Mulla, S Y Yousif
    University of Borås, School of Engineering.
    Shell Model Calculations for Alkali Halide Molecules2009Conference paper (Other academic)
  • 38.
    Al-Mulla, S Y Yousif
    University of Borås, School of Engineering.
    Modification of The Atomic Scattering Factor in Electric Field2014Conference paper (Refereed)
    Abstract [en]

    Quantum mechanical calculations of a modification of the X-ray scattering form factor of an atom/ion in an electric field using a three parameter wave function have been performed. These calculations are compared with the previous two parameter wave function calculations.

  • 39.
    Al-Mulla, S Y Youssif
    University of Borås, School of Engineering.
    Spin Dependent Exchange Scattering from Ferromagnetic Materials2008Conference paper (Other academic)
  • 40.
    Al-Mulla, Samir Yousif
    University of Borås, School of Engineering.
    Low-energy electron scattering from copper2006In: European Physical Journal D: Atomic, Molecular and Optical Physics, ISSN 1434-6060, E-ISSN 1434-6079, Vol. 42, 11- p.Article in journal (Refereed)
  • 41.
    Al-Mulla, Samir Yousif
    University of Borås, School of Engineering.
    Low-Energy electron scattering from Lithium and Potassium2007Conference paper (Other academic)
  • 42.
    Al-Mulla, S.Y.Yousif
    et al.
    University of Borås, School of Engineering.
    Jönsson, Lennart
    University of Borås, School of Engineering.
    Elastic Scattering of electrons from Lithium and Potassium2012Conference paper (Other academic)
  • 43.
    Alrud, Bengt
    University of Borås, School of Engineering.
    Fractal spectral measures in two dimensions2011Doctoral thesis, monograph (Other academic)
  • 44. Amer-Wåhlin, I
    et al.
    Kjellmer, I
    Maršál, K
    Olofsson, P
    Rosén, Karl Gustaf
    University of Borås, School of Engineering.
    Swedish randomized controlled trial of cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram revisited: analysis of data according to standard versus modified intention-to-treat principle.2011In: Acta Obstetricia et Gynecologica Scandinavica, ISSN 0001-6349, E-ISSN 1600-0412, ISSN 0001-6349, Vol. 90, no 9, 990-996 p.Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To undertake a renewed analysis of data from the previously published Swedish randomized controlled trial on intrapartum fetal monitoring with cardiotocography (CTG-only) vs. CTG plus ST analysis of fetal electrocardiogram (CTG+ST), using current standards of intention-to-treat (ITT) analysis and to compare the results with those of the modified ITT (mITT) and per protocol analyses. METHODS: Renewed extraction of data from the original database including all cases randomized according to primary case allocation (n=5 049). MAIN OUTCOME MEASURE: Metabolic acidosis in umbilical artery at birth (pH <7.05, base deficit in extracellular fluid >12.0 mmol/l) including samples of umbilical vein blood or neonatal blood if umbilical artery blood was missing. RESULTS: The metabolic acidosis rates were 0.66% (17 of 2 565) and 1.33% (33 of 2 484) in the CTG+ST and CTG-only groups, respectively [relative risk (RR) 0.50; 95% confidence interval (CI) 0.28-0.88; p=0.019]. The original mITT gave RR 0.47, 95%CI 0.25-0.86 (p=0.015), mITT with correction for 10 previously misclassified cases RR 0.48, 95%CI 0.24-0.96 (p=0.038) and per protocol analysis RR 0.40, 95%CI 0.20-0.80 (p=0.009). The level of significance of the difference in metabolic acidosis rates between the two groups remained unchanged in all analyses. CONCLUSION: Re-analysis of data according to the ITT principle showed that regardless of the method of analysis, the Swedish randomized controlled trial maintained its ability to demonstrate a significant reduction in metabolic acidosis rate when using CTG+ST analysis for fetal surveillance in labor.

  • 45. Amer-Wåhlin, Isis
    et al.
    Kjellmer, Ingemar
    Marsal, Karel
    Olofsson, Per
    Rosén, Karl Gustaf
    University of Borås, School of Engineering.
    Cardiotocography and ST analysis for intrapartum fetal monitoring2012In: Acta Obstetricia et Gynecologica Scandinavica, Vol. 91, no 4, 519- p.Article in journal (Other academic)
    Abstract [en]

    Letter to the Editor

  • 46. Amer-Wåhlin, Isis
    et al.
    Rosén, KG
    University of Borås, School of Engineering.
    ST-Analysis of the Fetal ECG2013In: Antenatal and Intrapartum fetal surveillance, Universities Press , 2013, 220-236 p.Chapter in book (Other academic)
  • 47. Anderson, D.
    et al.
    Andersson, F.
    Andersson, Peter
    University of Borås, School of Engineering.
    Billander, A.
    Desaix, Mats
    University of Borås, School of Engineering.
    The optimal journey from A to B2008In: American Journal of Physics, ISSN 0002-9505, E-ISSN 1943-2909, Vol. 76, no 9, 863-866 p.Article in journal (Refereed)
    Abstract [en]

    How fast can you comfortably travel between two points A and B? This question is formulated as a minimization problem of a functional where the discomfort is quantified in terms of the integral of the square of the acceleration between A and B. The problem is solved in terms of the corresponding Euler-Lagrange equation and approximately using a direct variational approach based on trial functions and Ritz optimization. The main purpose of the analysis is to introduce undergraduate students to variational calculus in an interesting and pedagogical way.

  • 48. Anderson, D.
    et al.
    Desaix, Mats
    University of Borås, School of Engineering.
    Lisak, M.
    Rasch, J.
    Galerkin approach to approximate solutions of some nonlinear oscillator equations2010In: American Journal of Physics, ISSN 0002-9505, E-ISSN 1943-2909, Vol. 78, no 9, 920-924 p.Article in journal (Refereed)
    Abstract [en]

    An analysis based on the Galerkin method is given of some nonlinear oscillator equations that have been analyzed by several other methods, including harmonic balance and direct variational methods. The present analysis is shown to provide simple yet accurate approximate solutions of these nonlinear equations and illustrates the usefulness and the power of the Galerkin method. (C) 2010 American Association of Physics Teachers.

  • 49.
    Andersson, Agnes
    et al.
    University of Borås, School of Engineering.
    Månsson, Bo
    University of Borås, School of Engineering.
    The impact of uncertainty on the materials planning process in Swedish textile industry2011Conference paper (Refereed)
  • 50.
    Andersson, Bengt-Åke
    et al.
    University of Borås, School of Engineering.
    Johansson, Andreas
    University of Borås, School of Engineering.
    Förbränning och termiska system för hållbar utveckling2009In: Vetenskap för profession, ISSN 1654-6520, 79-81 p.Article in journal (Other academic)
1234567 1 - 50 of 1010
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf