Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wijayarathna, E.R. Kanishka B.
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Mohammadkhani, Ghasem
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Moghadam, Farshad Homayouni
    Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology ACECR Isfahan 83431 Iran.
    Berglund, Linn
    Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå SE‐971 87 Sweden.
    Ferreira, Jorge
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Adolfsson, Karin H.
    Department of Fiber and Polymer Technology KTH Royal Institute of Technology Stockholm SE‐100 44 Sweden.
    Hakkarainen, Minna
    Department of Fiber and Polymer Technology KTH Royal Institute of Technology Stockholm SE‐100 44 Sweden.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Tunable Fungal Monofilaments from Food Waste for Textile Applications2023Ingår i: Global Challenges, E-ISSN 2056-6646Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A fungal biorefinery is presented to valorize food waste to fungal monofilaments with tunable properties for different textile applications. Rhizopus delemar is successfully grown on bread waste and the fibrous cell wall is isolated. A spinnable hydrogel is produced from cell wall by protonation of amino groups of chitosan followed by homogenization and concentration. Fungal hydrogel is wet spun to form fungal monofilaments which underwent post-treatments to tune the properties. The highest tensile strength of untreated monofilaments is 65 MPa (and 4% elongation at break). The overall highest tensile strength of 140.9 MPa, is achieved by water post-treatment. Moreover, post-treatment with 3% glycerol resulted in the highest elongation % at break, i.e., 14%. The uniformity of the monofilaments also increased after the post-treatments. The obtained monofilaments are compared with commercial fibers using Ashby's plots and potential applications are discussed. The wet spun monofilaments are located in the category of natural fibers in Ashby's plots. After water and glycerol treatments, the properties shifted toward metals and elastomers, respectively. The compatibility of the monofilaments with human skin cells is supported by a biocompatibility assay. These findings demonstrate fungal monofilaments with tunable properties fitting a wide range of sustainable textiles applications. 

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Perrin, Natacha
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Mohammadkhani, Ghasem
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Homayouni Moghadam, Farshad
    Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
    Delattre, Cédric
    Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; Institut Universitaire de France, Paris, France.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Biocompatible fibers from fungal and shrimp chitosans for suture application2022Ingår i: Current Research in Biotechnology, ISSN 2590-2628, Vol. 4, s. 530-536Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purified fungal chitosan and crustacean chitosan were wet spun by using adipic and lactic acids as solvent. The lowest viscosity at which fiber formation was possible was 0.5 Pa·s; below this value, aggregates from low molecular weight fungal chitosan (32 kDa) formed, which could not be collected and dried. Fiber formation was achieved with high molecular weight fungal (400 kDa) and shrimp (406.7 kDa) chitosans as well as low molecular weight shrimp chitosan (50–190 kDa). Fibers made of high molecular weight chitosans with adipic acid as the solvent generally exhibited higher tensile strength; the highest observed tensile strength and Young’s modulus were 308.0 ± 18.4 MPa and 22.7 ± 4.0 GPa, respectively. SEM images indicated the formation of cylindrical chitosan fibers. The survival (viability) of human skin fibroblasts in presence of different fibers was measured using tetrazolium-based colorimetric assay and results confirmed that chitosan fibers have better biocompatibility than common conventional sutures, regardless of the chitosan and acid type. Accordingly, chitosan fibers from fungal and shrimp sources serve as good candidates for application as sutures.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Wijayarathna, E.R. Kanishka B.
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Mohammadkhani, Ghasem
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Mahboubi Soufiani, Amir
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Adolfsson, Karin H.
    KTH Royal Institute of Technology.
    Ferreira, Jorge
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Hakkarainen, Minna
    KTH Royal Institute of Technology.
    Berglund, Linn
    Luleå University of Technology.
    Heinmaa, Ivo
    National Institute of Chemical Physics and Biophysics, Tallin, Estonia.
    Root, Andrew
    Magsol, Helsinki, Finland.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Fungal textile alternatives from bread waste with leather-like properties2021Ingår i: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, artikel-id 106041Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Food waste and fashion pollution are two of the most prominent global environmental issues. To alleviate the problems associated with food waste, while simultaneously contributing to sustainable fashion, the feasibility of making an alternative textile material with leather-like properties from fungal biomass cultivated on bread waste was investigated. The filamentous fungus, Rhizopus delemar, was successfully grown on waste bread in a submerged cultivation process, and fungal biomass was treated with vegetable tannin of chestnut wood. NMR and FTIR confirmed interactions between tannin and fungal biomass, while OM, SEM and AFM visualised the changes in the hyphae upon the tannin treatment. Thermal stability was assessed using TGA analysis. The wet-laid technique commonly utilised for paper-making was used to prepare sheets of hyphae. Some of the sheets were treated with glycerol and/or a biobased binder as post-treatment. Overall, three of the produced materials exhibited leather-like properties comparable to that of natural leather. Sheets from untreated biomass with only glycerol post-treatment showed a tensile strength of 7.7 MPa and an elongation at break of 5%. Whereas sheets from untreated biomass and tannin treated biomass with both glycerol and binder treatments led to tensile strengths of 7.1 MPa and 6.9 MPa, and the elongation at break of 12% and 17%, respectively. The enhancement of hydrophobicity after the binder treatment, helped to preserve the absorbed glycerol within the sheet and thereby the flexibility was retained when in contact with moisture. These findings demonstrate that bread waste-derived fungal sheets have great potential as environmentally friendly materials with leather-like properties.

    Ladda ner fulltext (pdf)
    fulltext
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf