Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Ji, Guangchao
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Rödby, Kristian
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Björlin, Anders
    Kiwok AB.
    Östlund, Anders
    Kiwok AB.
    Seoane, Fernando
    Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Textile-Electronic Integration in Wearable Measurement Garments for Pervasive Healthcare Monitoring2015Konferansepaper (Annet vitenskapelig)
  • 2.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Ji, Guangchao
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Rödby, Kristian
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Seoane, Fernando
    Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. KTH-School of Technology and Health.
    A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype2015Inngår i: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, s. 3121-3124Konferansepaper (Fagfellevurdert)
  • 3.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Guangchao, Li
    KTH-School of Technology and Health.
    Rödby, Kristian
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Seoane, Fernando
    Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. KTH-School of Technology and Health.
    A Knitted Garment using Intarsia Technique for Heart Rate Variability Biofeedback: Evaluation of Initial Prototype.2015Konferansepaper (Annet vitenskapelig)
  • 4. Brown, Shannon
    et al.
    Ortiz-Catalan, Max
    Chalmers University of Technology.
    Petersson, Joel
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Rödby, Kristian
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Seoane, Fernando
    Högskolan i Borås, Akademin för textil, teknik och ekonomi. KTH-School of Technology and Health.
    Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition2016Inngår i: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, Institute of Electrical and Electronics Engineers (IEEE) , 2016, s. 6074-6077Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  • 5. Brown, Shannon
    et al.
    Ortiz-Catalan, Max
    Chalmers University of Technology.
    Petersson, Joel
    Högskolan i Borås, Akademin för textil, teknik och ekonomi. Högskolan i Borås.
    Rödby, Kristian
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Seoane, Fernando
    Högskolan i Borås, Akademin för textil, teknik och ekonomi. KTH-School of Technology and Health.
    Intarsia-Sensorized Band and Textrodes for the Acquisition of Myoelectric Signals2016Inngår i: The Second International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems, International Academy, Research and Industry Association (IARIA) , 2016, s. 14-19, artikkel-id 2_10_80013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation, and has been an increasing area of study. This study attempts to use a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques to evaluate the quality of sEMG acquired by knitted textile electrodes. Myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. Overall no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers. On average the textile electrodes produced a high prediction accuracy, >97% across all movements, which is equivalent to the accuracy obtained with conventional gel electrodes (Ag-AgCl). Furthermore the SNR for the Maximum Voluntary Contraction did not differ considerably between the textile and the Ag-AgCl electrodes.

1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf