Endre søk
Begrens søket
1 - 26 of 26
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bidgoli, Hossein
    et al.
    Zamani, Akram
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Taherzadeh, Mohammad J.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Effect of carboxymethylation conditions on water binding capacity of chitosan-based superabsorbents2010Inngår i: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 345, nr 18, s. 2683-2689Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A superabsorbent polymer (SAP) from chitosan was provided via carboxymethylation of chitosan, followed by cross-linking with glutaraldehyde and freeze-drying. This work was focused on an investigation of the effects of monochloroacetic acid (MCAA), sodium hydroxide, and reaction time on preparation of carboxymethylchitosan (CMCS). The CMCS products were characterized using FTIR spectroscopy, and their degrees of substitution (DS) were measured using conductimetry and FTIR analysis. The highest DS value was obtained when the carboxymethylation reaction was carried out using 1.75 g MCAA and 1.75 g NaOH per g of chitosan in 4 h. The water solubilities of the CMCS products at various pHs were also evaluated, and the results indicated a significant impact of the reaction parameters on the solubility of CMCS. The CMCSs with the highest DS value resulted in SAPs having the highest water-binding capacity (WBC). TheWBCof the best SAP measured after 10 minexposure in distilled water, 0.9% NaCl solution, synthetic urine, and artificial blood was 104, 33, 30, and 57 g/g, respectively. The WBC of this SAP at pH 2–9 passed a maximum at pH 6.

  • 2.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Jabbari, Mostafa
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Lennartsson, Patrik R.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling2017Inngår i: International Journal of Polymer Science, ISSN 1687-9422, E-ISSN 1687-9430, Vol. 2017, s. 1-9, artikkel-id 9732329Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While citrus waste is abundantly generated, the disposal methods used today remain unsatisfactory: they can be deleterious for ruminants, can cause soil salinity, or are not economically feasible; yet citrus waste consists of various valuable polymers. This paper introduces a novel environmentally safe approach that utilizes citrus waste polymers as a biobased and biodegradable film, for example, for food packaging. Orange waste has been investigated for biofilm production, using the gelling ability of pectin and the strength of cellulosic fibres. A casting method was used to form a film from the previously washed, dried, and milled orange waste. Two film-drying methods, a laboratory oven and an incubator shaker, were compared. FE-SEM images confirmed a smoother film morphology when the incubator shaker was used for drying. The tensile strength of the films was 31.67 ± 4.21 and 34.76 ± 2.64 MPa, respectively, for the oven-dried and incubator-dried films, which is within the range of different commodity plastics. Additionally, biodegradability of the films was confirmed under anaerobic conditions. Films showed an opaque appearance with yellowish colour.

  • 3.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Lundin, Magnus
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Lennartsson, Patrik R.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    The effect of glycerol, sugar and maleic anhydride on pectin-cellulose biofilms prepared from orange wasteInngår i: Artikkel i tidsskrift (Fagfellevurdert)
  • 4.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Lundin, Magnus
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Lennartsson, Patrik R.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    The Effect of Glycerol, Sugar, and Maleic Anhydride on Pectin-Cellulose Thin Films Prepared from Orange Waste2019Inngår i: POLYMERS, Vol. 11, nr 3Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study was conducted to improve the properties of thin films prepared from orange waste by the solution casting method. The main focus was the elimination of holes in the film structure by establishing better cohesion between the major cellulosic and pectin fractions. For this, a previously developed method was improved first by the addition of sugar to promote pectin gelling, then by the addition of maleic anhydride. Principally, maleic anhydride was introduced to the films to induce cross-linking within the film structure. The effects of concentrations of sugar and glycerol as plasticizers and maleic anhydride as a cross-linking agent on the film characteristics were studied. Maleic anhydride improved the structure, resulting in a uniform film, and morphology studies showed better adhesion between components. However, it did not act as a cross-linking agent, but rather as a compatibilizer. The middle level (0.78%) of maleic anhydride content resulted in the highest tensile strength (26.65 +/- 3.20 MPa) at low (7%) glycerol and high (14%) sugar levels and the highest elongation (28.48% +/- 4.34%) at high sugar and glycerol levels. To achieve a uniform film surface with no holes present, only the lowest (0.39%) level of maleic anhydride was necessary.

  • 5.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Pallhed, Jonny
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Development of biocomposite films from citrus waste2016Konferansepaper (Annet vitenskapelig)
  • 6.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Pectin-based Composites2017Inngår i: Handbook of Composites from Renewable Materials: Biodegradable Materials, John Wiley & Sons, 2017, s. 487-518Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    One third of the cell wall of vascular plants is composed of pectin, which serves as the cementing material for the cellulosic network, behaving as a stabilized gel. Industrially, pectin is produced from juice and sugar production waste. Different sources and extraction conditions result in diversity in characteristics and applications of pectin. Most commonly, pectin is used in the food industry as a gelling and thickening agent and it is favored in the pharmaceutical industry as a carrier for colon-specific drugs. Pectin has good potential to be utilized as a matrix in production of environmentally friendly film packaging as well as biocomposite materials. Pectin is sensitive to chemical reactions and promotes the homogeneous immobilization of cells, genes, and proteins. However, due to limited mechanical properties pectin is not used for structural applications but instead rather for composites in which its biodegradable properties can be utilized. Pectin is often reinforced with hydroxyapatite and biphasic calcium phosphate for bone regeneration and tissue engineering applications. It can also be used as a biosorbent for copper removal from aqueous solutions. Active packaging of nanohybrids composed of pectin and halloysite nanotubes that are loaded with rosemary essential oil is another application of pectin-based composites.

  • 7.
    Bátori, Veronika
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Sárvári Horváth, Ilona
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Anaerobic degradation of bioplastics: A review2018Inngår i: Waste Management, Vol. 80, s. 406-413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), leading to renewableenergy production in the form of methane, is a preferable method for dealing with the increasing amountof waste. Food waste is separated at the source in many countries for anaerobic digestion. However, thepresence of plastic bags is a major challenge for such processes. This study investigated the anaerobicdegradability of different bioplastics, aiming at potential use as collecting bags for the OFMSW. Thechemical composition of the bioplastics and the microbial community structure in the AD processaffected the biodegradation of the bioplastics. Some biopolymers can be degraded at hydraulic retentiontimes usually applied at the biogas plants, such as poly(hydroxyalkanoate)s, starch, cellulose and pectin,so no possible contamination would occur. In the future, updated standardization of collecting bags forthe OFMSW will be required to meet the requirements of effective operation of a biogas plant.

  • 8. Gurram, Rajesh
    et al.
    Souza Filho, Pedro
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    A solvent-free approach for production of films from pectin and fungal biomass2018Inngår i: Journal of polymers and the environment, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 26, nr 11, s. 4282-4292Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.

  • 9. Gustafsson, Jesper
    et al.
    Landberg, Mikael
    Bátori, Veronika
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Åkesson, Dan
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Development of Bio-Based Films and 3D Objects from Apple Pomace2019Inngår i: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, nr 2, artikkel-id 289Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Extensive quantities of apple pomace are generated annually but its disposal is still challenging. This study addresses this issue by introducing a new, environmentally-friendly approach for the production of sustainable biomaterials from apple pomace, containing 55.47% free sugars and a water insoluble fraction, containing 29.42 ± 0.44% hemicelluloses, 38.99 ± 0.42% cellulose, and 22.94 ± 0.12% lignin. Solution casting and compression molding were applied to form bio-based films and 3D objects (i.e., fiberboards), respectively. Using glycerol as plasticizer resulted in highly compact films with high tensile strength and low elongation (16.49 ± 2.54 MPa and 10.78 ± 3.19%, respectively). In contrast, naturally occurring sugars in the apple pomace showed stronger plasticizing effect in the films and resulted in a fluffier and connected structure with significantly higher elongation (37.39 ± 10.38% and 55.41 ± 5.38%, respectively). Benefiting from the self-binding capacity of polysaccharides, fiberboards were prepared by compression molding at 100 °C using glycerol or naturally occurring sugars, such as plasticizer. The obtained fiberboards exhibited tensile strength of 3.02–5.79 MPa and elongation of 0.93%–1.56%. Possible applications for apple pomace biomaterials are edible/disposable tableware or food packaging. 

  • 10.
    Jeihanipour, Azam
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Karimi, Keikhosro
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Effect of growing time on the chitosan content of cell wall of zygomycetes fungi2009Konferansepaper (Annet vitenskapelig)
  • 11.
    Mohsenzadeh, Abas
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Bioethylene Production from Ethanol: A Review and Techno-economical Evaluation.2017Inngår i: Challenges in Sustainability, ISSN 2196-0216, E-ISSN 2196-9744, Vol. 4, nr 2, s. 75-91Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Manufg. of bioethylene via dehydration of bioethanol is an alternative to the fossil-based ethylene prodn. and decreases the environmental consequences for this chem. commodity. A few industrial plants that utilize 1st generation bioethanol for the bioethylene prodn. already exist, although not functioning without subsidiaries. However, there is still no process producing ethylene from 2nd generation bioethanol. This study is divided into two parts. Different ethanol and ethylene prodn. methods, the process specifications and current technologies are briefly discussed in the first part. In the second part, a techno-economic anal. of a bioethylene plant was performed using Aspen plus and Aspen Process Economic Analyzer, where different qualities of ethanol were considered. The results show that impurities in the ethanol feed have no significant effect on the quality of the produced polymer-grade bioethylene. The capacity of the ethylene storage tank significantly affects the capital costs of the process. [on SciFinder(R)]

  • 12.
    Satari, B.
    et al.
    Swedish Centre for Resource Recovery, University of Borås.
    Karimi, K.
    Department of Chemical Engineering, Isfahan University of Technology.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Co-production of fungal biomass derived constituents and ethanol from citruswastes free sugars without auxiliary nutrients in airlift bioreactor2016Inngår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 17, nr 3Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process. 

  • 13. Satari, Behzad
    et al.
    Palhed, Jonny
    Karimi, Keikhosro
    Lundin, Magnus
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment.2017Inngår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 12, nr 1, s. 1706-1722Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In a novel valorization approach for simultaneous pectin extn. and pretreatment (SPEP) of citrus waste (CW) by dil. nitric acid and ethanol, almost all of the CW was converted to bio-derived chems. in a singlestep process at a low/moderate temp. The SPEP was performed at different temps. (70 °C and 80 °C), pH (1.8, 3.0, and 4.3), and extn. times (2 h and 3 h) with a full factorial design. The max. pectin yield of 45.5% was obtained at pH 1.8, 80 °C, and 2 h. The pectin yields at pH 1.8 were much higher than at pH 4.3 and 3. Also, the degree of methyl-esterification at pH 1.8 was higher than 50%, whereas at the higher pH, low methoxyl pectins were extd. The treated CW obtained after the SPEP, free from limonene, was subjected to sep. cellulolytic enzymic hydrolysis and ethanolic fermn. The glucose yields in the enzymic hydrolyzates were higher for the CW treated at pH 1.8. The fermn. of the enzymic hydrolyzates by Mucor indicus resulted in fungal biomass yields in the range of 355 to 687 mg per g of consumed sugars. The optimum conditions for obtaining the max. SPEP yield (glucose + pectin (g) / raw material (g)*100) were pH 1.8, 80 °C, and 2 h, which resulted in a yield of 58.7% (g/g CW). [on SciFinder(R)]

  • 14.
    Satari, Behzad
    et al.
    Isfahan University of Technology.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi. Isfahan University of Technology.
    Karimi, Keikhosro
    Isfahan University of Technology.
    Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor2016Inngår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 17, nr 3, artikkel-id 302Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.[on SciFinder (R)]

  • 15.
    Souza Filho, Pedro
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Brancoli, Pedro
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Bolton, Kim
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Techno-Economic and Life Cycle Assessment of Wastewater Management from Potato Starch Production: Present Status and Alternative Biotreatments2017Inngår i: Fermentation, Vol. 3, nr 4Artikkel i tidsskrift (Fagfellevurdert)
  • 16.
    Souza Filho, Pedro Ferreira
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Edible Protein Production by Filamentous Fungi using Starch Plant Wastewater2018Inngår i: Waste and Biomass Valorization, ISSN 1877-2641, s. 1-10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The process to obtain starch from wheat requires high amounts of water, consequently generating large amounts of wastewater with very high environmental loading. This wastewater is traditionally sent to treatment facilities. This paper introduces an alternative method, where the wastewater of a wheat-starch plant is treated by edible filamentous fungi (Aspergillus oryzae and Rhizopus oryzae) to obtain a protein-rich biomass to be used as e.g. animal feed. The wastewater was taken from the clarified liquid of the first and second decanter (ED1 and ED2, respectively) and from the solid-rich stream (SS), whose carbohydrate and nitrogen concentrations ranged between 15 and 90 and 1.25–1.40 g/L, respectively. A. oryzae showed better performance than R. oryzae, removing more than 80% of COD after 3 days for ED1 and ED2 streams. Additionally, 12 g/L of dry biomass with protein content close to 35% (w/w) was collected, demonstrating the potential of filamentous fungi to be used in wastewater valorization. High content of fermentable solids in the SS sample led to high production of ethanol (10.91 g/L), which can be recovered and contribute to the economics of the process.

  • 17.
    Souza Filho, Pedro
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Production of Edible Fungi from Potato Protein Liquor (PPL) in Airlift Bioreactor2017Inngår i: Fermentation, ISSN 2311-5637, Vol. 3, nr 1, s. 12-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Potato protein liquor (PPL), a side stream from the potato starch industry, is normally used as fertilizer. However, with more than 100 g/L of sugars, 20 g/L of Kjeldahl nitrogen and Chemical Oxigen Demand (COD) of 300 g/L, it represents serious environmental challenges. The use of PPL for fungal cultivation is a promising solution to convert this waste into valuable products. In this study, PPL was characterized and used to cultivate edible zygomycete Rhizopus oryzae, which is widely used in Southeast Asian cuisine to prepare e.g., tempeh. Moreover, it can be potentially used as a protein source in animal feed worldwide. Under the best conditions, 65.47 ± 2.91 g of fungal biomass per litre of PPL was obtained in airlift bioreactors. The total Kjeldahl nitrogen content of the biomass was above 70 g/kg dry biomass. The best results showed 51% reduction of COD and 98.7% reduction in the total sugar content of PPL.

  • 18.
    Souza Filho, Pedro
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Solid Precipitation from Potato Protein Liquor by Ethanol2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The production of starch in European Union (EU 28) was around 10 million tonnes in 2013, 12.6% of them being from potato1. During the potato processing, two main by-products which have high Biological Oxygen Demand (BOD) are formed, i.e. potato pulp (PP) and potato liquor (PL)2. Proteins can be partially recovered from PL, resulting in a concentrated residual material known as potato protein liquor (PoPL)2,3. The use of PoPL has been investigated to cultivate fungal4 and yeast3 biomass, and produce enzymes2. However, presence of nitrogen and phosphate containing materials as well as suspended solids at high concentrations4 limits its application in bioprocesses. The present study was proposed to investigate the precipitation of components from PoPL by ethanol in order to get an easily fermentable solution. PoPL from Lyckeby Starch AB was mixed with different amounts of ethanol and centrifuged at 3000 g for 5 min. The liquid obtained was put under a fume hood for 48 h at room temperature for ethanol evaporation. All the samples had their volumes adjusted to the same value using distilled water. The precipitate was dried at 105 °C. All experiments were done in duplicate. The precipitation of solids improved almost 500% for a mixture of equal volumes of PoPL and ethanol compared to PoPL without ethanol addition. The protein and ash contents of the precipitate were respectively higher than 245 g/kg and 420 g/kg in all the cases, making it eligible for production of fertilizer or animal feed. Most of the analysed sugars (glucose, fructose, and sucrose) stayed in the liquid phase. Ethanol concentration in the liquid phase remained close to initial value after the 48-hour evaporation. This indicates the need for a distillation column for ethanol recovery before the remaining sugar solution can be used for fermentation purposes.

  • 19. Yazdani, Parviz
    et al.
    Zamani, Akram
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Karimi, Keikhosro
    Taherzadeh, Mohammad J
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.2015Inngår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 176, s. 196-202Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nizimuddinia zanardini macroalgae, harvested from Persian Gulf, was chem. characterized and employed for the prodn. of ethanol, seaweed ext., alginic acid, and biogas. In order to improve the products yields, the biomass was pretreated with dil. sulfuric acid and hot water. The pretreated and untreated biomasses were subjected to enzymic hydrolysis by cellulase (15 FPU/g) and β-glucosidase (30 IU/g). Hydrolysis yield of glucan was 29.8, 82.5, and 72.7 g/kg for the untreated, hot-water pretreated, and acid pretreated biomass, resp. Anaerobic fermn. of hydrolyzates by Saccharomycescerevisiae resulted in the max. ethanol yield of 34.6 g/kg of the dried biomass. A seaweed ext. contg. mannitol and a solid residue contg. alginic acid were recovered as the main byproducts of the ethanol prodn. On the other hand, the biogas yield from the biomass was increased from 170 to 200 m3 per ton of dried algae biomass by hot water pretreatment. [on SciFinder(R)]

  • 20.
    Zamani, Akram
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Superabsorbent Polymers from the Cell Wall of Zygomycetes Fungi2010Doktoravhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    The present thesis presents new renewable, antimicrobial and biodegradable superabsorbent polymers (SAPs), produced from the cell wall of zygomycetes fungi. The cell wall was characterized and chitosan, being one of the most important ingredients, was extracted, purified, and converted to SAP for use in disposable personal care products designed for absorption of different body fluids. The cell wall of zygomycetes fungi was characterized by subsequent hydrolysis with sulfuric and nitrous acids and analyses of the products. The main ingredients of the cell wall were found to be polyphosphates (4-20%) and copolymers of glucosamine and N-acetyl glucosamine, i.e. chitin and chitosan (45-85%). The proportion of each of these components was significantly affected by the fungal strain and also the cultivation conditions. Moreover, dual functions of dilute sulfuric acid in relation to chitosan, i.e. dissolution at high temperatures and precipitation at lowered temperatures, were discovered and thus used as a basis for development of a new method for extraction and purification of the fungal chitosan. Treatment of the cell wall with dilute sulfuric acid at room temperature resulted in considerable dissolution of the cell wall polyphosphates, while chitosan and chitin remained intact in the cell wall residue. Further treatment of this cell wall residue, with fresh acid at 120°C, resulted in dissolution of chitosan and its separation from the remaining chitin/chitosan of the cell wall skeleton which was not soluble in hot acid. Finally, the purified fungal chitosan (0.34 g/g cell wall) was recovered by precipitation at lowered temperatures and pH 8-10. The purity and the yield of fungal chitosan in the new method were significantly higher than that were obtained in the traditional acetic acid extraction method. As a reference to pure chitosan, SAP from shellfish chitosan, was produced by conversion of this biopolymer into water soluble carboxymethyl chitosan (CMCS), gelation of CMCS with glutaraldehyde in aqueous solutions (1-2%), and drying the resultant gel. Effects of carboxymethylation, gelation and drying conditions on the water binding capacity (WBC) of the final products, were investigated. Finally, choosing the best condition, a biological superabsorbent was produced from zygomycetes chitosan. The CMCS-based SAPs were able to absorb up to 200 g water/g SAP. The WBC of the best SAP in urine and saline solutions was 40 and 32 g/g respectively, which is comparable to the WBC of commercially acceptable SAPs under identical conditions (34-57 and 30-37 g/g respectively).

  • 21.
    Zamani, Akram
    et al.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Edebo, L.
    Niklasson, C.
    Taherzadeh, Mohammad
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Temperature Shifts for Extraction and Purification of Zygomycetes Chitosan with Dilute Sulfuric Acid2010Inngår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 11, nr 8, s. 2976-2987Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The temperature-dependent hydrolysis and solubility of chitosan in sulfuric acid solutions offer the possibility for chitosan extraction from zygomycetes mycelia and separation from other cellular ingredients with high purity and high recovery. In this study, Rhizomucor pusillus biomass was initially extracted with 0.5 M NaOH at 120 °C for 20 min, leaving an alkali insoluble material (AIM) rich in chitosan. Then, the AIM was subjected to two steps treatment with 72 mM sulfuric acid at (i) room temperature for 10 min followed by (ii) 120 °C for 45 min. During the first step, phosphate of the AIM was released into the acid solution and separated from the chitosan-rich residue by centrifugation. In the second step, the residual AIM was re-suspended in fresh 72 mM sulfuric acid, heated at 120 °C and hot filtered, whereby chitosan was extracted and separated from the hot alkali and acid insoluble material (HAAIM). The chitosan was recovered from the acid solution by precipitation at lowered temperature and raised pH to 8-10. The treatment resulted in 0.34 g chitosan and 0.16 g HAAIM from each gram AIM. At the start, the AIM contained at least 17% phosphate, whereas after the purification, the corresponding phosphate content of the obtained chitosan was just 1%. The purity of this chitosan was higher than 83%. The AIM subjected directly to the treatment with hot sulfuric acid (at 120 °C for 45 min) resulted in a chitosan with a phosphate impurity of 18.5%.

  • 22.
    Zamani, Akram
    et al.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Edebo, Lars
    Sjöström, Björn
    Taherzadeh, Mohammad J.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Extraction and Precipitation of Chitosan from Cell Wall of Zygomycetes Fungi by Dilute Sulfuric Acid2007Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 12, s. 3786-3790Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new method was developed in this work for extraction of chitosan and partial characterization of zygomycetes fungi. The method is based on temperature-dependent solubility of chitosan in dilute sulfuric acid. Chitin (acetylated chitosan) is neither soluble in cold nor hot dilute sulfuric acid. Similarly chitosan is not soluble at room temperature. However, it is dissolved in 1% H2SO4 at 121°C within just 20 min. The new method was developed to measure the chitosan content of biomass and cell wall materials derived from different sources. The procedures were investigated by measuring phosphate, protein, ash, glucuronic acid and degree of acetylation. The cell wall derivatives of fungus Rhizomucor pusillus were then examined by this new method. The results indicated 8% of the dry biomass as chitosan. After treatment with NaOH, the alkali insoluble material (AIM) contained 45.3% chitosan. Treatment of AIM with acetic acid resulted in acetic acid soluble material (AcSM), 16.5% and alkali and acid insoluble material (AAIM), 79.0%. AcSM is traditionally cited as pure chitosan, but this new method shows major impurities by e.g. phosphate. Furthermore, traditional methods usually consider AAIM as chitosan-free fraction of the cell walls, while this new method shows more than 76% of the chitosan present in AIM to be found in AAIM. It might indicate the inability of acetic acid to separate fungal chitosan from the cell wall.

  • 23.
    Zamani, Akram
    et al.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Henriksson, D.
    Taherzadeh, Mohammad
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    A new foaming technique for production of superabsorbents from carboxymethyl chitosan2010Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 80, nr 4, s. 1091-1101Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A foaming technique was developed for production of superabsorbent polymers (SAP) from carboxymethyl chitosan (CMCS) with high, medium and low molecular weights. In this method n-pentane was used as a blowing agent due to low boiling point and immiscibility with water. n-Pentane was added to a warm aqueous solution of CMCS and boiled. CMCS was then gelled by adding the crosslinking agent glutaraldehyde and consequently n-pentane was captured inside the polymer network. The n-pentane was evaporated from this network while drying in oven. It resulted in stable foam that prevented the hydrogel from collapsing and the dried product had a porous structure with a high water-binding capacity (WBC). The effects of molecular weight of CMCS and its concentration, and the amounts of glutaraldehyde and n-pentane used, on WBC were investigated and optimized using response surface experimental design. The best result for WBC of foam-dried SAP was 107 (g/g) after exposing for 1 h in pure water and 60 (g/g) and 37 (g/g) after exposing for one min in pure water and 0.9% NaCl solution, respectively. The WBC of the SAP produced by the foaming technique was more than five times higher than the WBC of the oven-dried crosslinked CMCS.

  • 24.
    Zamani, Akram
    et al.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Jeihanipour, Azam
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Edebo, Lars
    Niklasson, Claes
    Taherzadeh, Mohammad J.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Determination of glucosamine and N-acetyl glucosamine in fungal cell walls2008Inngår i: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 56, nr 18, s. 8314-8318Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new method was developed to determine glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) in materials containing chitin and chitosan, such as fungal cell walls. It is based on two steps of hydrolysis with (i) concentrated sulfuric acid at low temperature and (ii) dilute sulfuric acid at high temperature, followed by one-step degradation with nitrous acid. In this process, chitin and chitosan are converted into anhydromannose and acetic acid. Anhydromannose represents the sum of GlcN and GlcNAc, whereas acetic acid is a marker for GlcNAc only. The method showed recovery of 90.1% of chitin and 85.7-92.4% of chitosan from commercial preparations. Furthermore, alkali insoluble material (AIM) from biomass of three strains of zygomycetes, Rhizopus oryzae, Mucor indicus, and Rhizomucor pusillus, was analyzed by this method. The glucosamine contents of AIM from R. oryzae and M. indicus were almost constant (41.7 +/- 2.2% and 42.0 +/- 1.7%, respectively), while in R. pusillus, it decreased from 40.0 to 30.0% during cultivation from 1 to 6 days. The GlcNAc content of AIM from R. oryzae and R. pusillus increased from 24.9 to 31.0% and from 36.3 to 50.8%, respectively, in 6 days, while it remained almost constant during the cultivation of M. indicus (23.5 +/- 0.8%).

  • 25.
    Zamani, Akram
    et al.
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Taherzadeh, Mohammad
    Högskolan i Borås, Institutionen Ingenjörshögskolan.
    Effects of partial dehydration and freezing temperature on water binding capacity of chitosan-based superabsorbents2010Inngår i: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 49, nr 17, s. 8094-8099Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Superabsorbent polymers (SAPs) were prepared from carboxymethyl chitosan (CMCS) cross-linked to a gel, concentrated by partial dehydration in a rotary evaporator (at 70, 85, and 100 °C), frozen at −5, −20, and −196 °C, and then freeze dried. A 0.9% aqueous solution of CMCS was gelled by addition of glutaraldehyde and partially dehydrated to 1.3−16.8% dry matter (DM) before freeze drying. The water binding capacity (WBC) of the products was up to 171 g/g of superabsorbent. The best results were obtained when 32−81% of the water in the gel was removed in the evaporator at 85−100 °C, and the concentrated gel (1.3−4.7% DM) was frozen in liquid nitrogen at −196 °C before freeze drying. On average, these SAPs, according to SEM micrographs, had a porous sponge-like structure and absorbed 35 and 32 g/g of saline and urine solutions after 10 min exposure, respectively. The corresponding WBC of two commercial polyacrylate-based SAPs was 34−57 g/g for saline and 30−37 g/g for urine solutions.

  • 26.
    Zamani, Akram
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Taherzadeh, Mohammad J
    Effects of partial dehydration and freezing temperature on the morphology and water binding capacity of carboxymethyl chitosan-based superabsorbents2010Inngår i: Industrial and Engineering Chemistry Research, ISSN 0196-4321, Vol. 49, nr 17, s. 8094-8099Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Superabsorbent polymers (SAPs) were prepared from carboxymethyl chitosan (CMCS) cross-linked to a gel, concentrated by partial dehydration in a rotary evaporator (at 70, 85, and 100°C), frozen at -5, -20, and -196°C, and then freeze dried. A 0.9% aqueous solution of CMCS was gelled by addition of glutaraldehyde and partially dehydrated to 1.3-16.8% dry matter (DM) before freeze drying. The water binding capacity (WBC) of the products was up to 171 g/g of superabsorbent. The best results were obtained when 32-81% of the water in the gel was removed in the evaporator at 85-100°C, and the concentrated gel (1.3-4.7% DM) was frozen in liquid nitrogen at -196°C before freeze drying. On average, these SAPs, according to SEM micrographs, had a porous sponge-like structure and absorbed 35 and 32 g/g of saline and urine solutions after 10 min exposure, respectively. The corresponding WBC of two commercial polyacrylate-based SAPs was 34-57 g/g for saline and 30-37 g/g for urine solutions. 

1 - 26 of 26
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf