Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Souza Filho, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Andersson, Dan
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mycoprotein: environmental impact and health aspects2019In: World Journal of Microbiology & Biotechnology, ISSN 0959-3993, E-ISSN 1573-0972, Vol. 35, no 10Article in journal (Refereed)
    Abstract [en]

    The term mycoprotein refers to the protein-rich food made of filamentous fungal biomass that can be consumed as an alternative to meat. In this paper, the impact caused by the substitution of animal-origin meat in the human diet for mycoprotein on the health and the environment is reviewed. Presently, mycoprotein can be found in the supermarkets of developed countries in several forms (e.g. sausages and patties). Expansion to other markets depends on the reduction of the costs. Although scarce, the results of life cycle analyses of mycoprotein agree that this meat substitute causes an environmental impact similar to chicken and pork. In this context, the use of inexpensive agro-industrial residues as substrate for mycoprotein production has been investigated. This strategy is believed to reduce the costs involved in the fungal cultivation and lower the environmental impact of both the mycoprotein and the food industry. Moreover, several positive effects in health have been associated with the substitution of meat for mycoprotein, including improvements in blood cholesterol concentration and glycemic response. Mycoprotein has found a place in the market, but questions regarding the consumer's experience on the sensory and health aspects are still being investigated.

  • 2.
    Souza Filho, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nair, Ramkumar
    Mycorena AB.
    Andersson, Dan
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi2018In: Fungal Biology and Biotechnology, ISSN 2054-3085, Vol. 5, no 5Article in journal (Refereed)
    Abstract [en]

    Background

    Currently around one billion people in the world do not have access to a diet which provides enough protein and energy. However, the production of one of the main sources of protein, animal meat, causes severe impacts on the environment. The present study investigates the production of a vegan-mycoprotein concentrate from pea-industry byproduct (PpB), using edible filamentous fungi, with potential application in human nutrition. Edible fungal strains of Ascomycota (Aspergillus oryzaeFusarium venenatumMonascus purpureusNeurospora intermedia) and Zygomycota (Rhizopus oryzae) phyla were screened and selected for their protein production yield.

    Results

    A. oryzae had the best performance among the tested fungi, with a protein yield of 0.26 g per g of pea-processing byproduct from the bench scale airlift bioreactor cultivation. It is estimated that by integrating the novel fungal process at an existing pea-processing industry, about 680 kg of fungal biomass attributing to about 38% of extra protein could be produced for each 1 metric ton of pea-processing byproduct. This study is the first of its kind to demonstrate the potential of the pea-processing byproduct to be used by filamentous fungi to produce vegan-mycoprotein for human food applications.

    Conclusion

    The pea-processing byproduct (PpB) was proved to be an efficient medium for the growth of filamentous fungi to produce a vegan-protein concentrate. Moreover, an industrial scenario for the production of vegan-mycoprotein concentrate for human nutrition is proposed as an integrated process to the existing PPI production facilities.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf