Change search
Refine search result
1 - 112 of 112
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nemat, Babak
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Razzaghi, Mohammad
    Department of Industrial Design, Faculty of Applied Arts, University of Art, Tehran 1136813518, Iran.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Design-Based Approach to Support Sorting Behavior of Food Packaging2023In: Clean Technologies, E-ISSN 2571-8797, Vol. 5, no 1, p. 297-328Article in journal (Refereed)
    Abstract [en]

    It is widely acknowledged that environmental impacts from packaging waste depend on how consumers sort this waste fraction. In this research, “design for sustainable behavior” (DfSB) strategies are used to improve a cream packaging design that can support proper sorting of packaging waste as a sustainable behavior. The application of three DfSB strategies—“match”, “steer”, and “force”—was examined through circular interviews and practical experience with two groups of participants in Karlskrona, Sweden. Prototyping was used to provide a more realistic experiment and enhance communication during the interviews. The results show that consumer-packaging interaction during the usage phase is important to enhance proper sorting behavior. The results also show the potential of a user-centered design-based approach to study consumer-packaging interaction and to understand the challenges faced by users when sorting packaging waste. It also shows the possibility of packaging design to script consumer behavior and reveals details that are important when designing packaging that was not known. In this vein, packaging form, color, and haptic attributes are the most influential design attributes that can support packaging functionalities and script consumer sorting behavior.

    Download full text (pdf)
    fulltext
  • 2.
    Moshtaghian, Hanieh
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Public preferences for nutritional, environmental and food safety characteristics of upcycled foods in Sweden2023In: International journal of food science & technology, ISSN 0950-5423, E-ISSN 1365-2621Article in journal (Refereed)
    Abstract [en]

    This study investigates people's preferences for nutritional, environmental and food safety characteristics of upcycled foods according to their age group and assesses the association between age and the importance of these characteristics in a Swedish population. A food choice questionnaire was used for data collection, and 681 Swedish residents aged ≥18 years participated in this study. In young, middle-aged and older adults, environmental (environmentally friendly preparation and packaging, local production and contribution to food waste reduction) and food safety (absence of additives, chemicals, genetically modified ingredients and contamination) characteristics of upcycled foods were more important than most nutritional characteristics (low energy and fat content and high fibre and protein content). There was a positive association between age and the importance score of nutritional characteristics, such as rich in vitamins and minerals, low energy and fat content and minimal food processing (P-value < 0.05). A negative association was observed between age and the importance score of contribution to food waste reduction (P-value = 0.014). There was a positive association between age and the importance score of food safety characteristics, such as the absence of additives, chemicals and genetically modified ingredients (P-value < 0.05). Therefore, the environmental benefits and food safety aspects of upcycled foods can be considered for product development and marketing to facilitate the acceptability of these foods in all age groups. Since the nutritional attributes of upcycled foods were less important than their environmental and food safety characteristics, strategies should be introduced to educate people regarding desirable nutritional features to enable them to choose healthy upcycled foods. 

    Download full text (pdf)
    fulltext
  • 3.
    Moshtaghian, Hanieh
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Upcycled food choice motives and their association with hesitancy towards consumption of this type of food: a Swedish study2023In: British Food Journal, ISSN 0007-070X, E-ISSN 1758-4108Article in journal (Refereed)
    Abstract [en]

    Purpose

    This study investigates factors motivating upcycled food choices and assesses the association between these factors and hesitancy towards upcycled food consumption in a Swedish population.

    Design/methodology/approach

    An online food choice questionnaire was used. Participants (n = 682) were categorised into Inclined and Hesitant groups based on their intention to consume upcycled foods. The factors motivating upcycled food choices were identified using explanatory factor analyses. Independent t-tests assessed the differences in the mean importance score of factors between the two groups. The association between upcycled food choice factors and hesitancy towards consumption was evaluated by logistic regressions (adjusted for sociodemographic characteristics).

    Findings

    The most important upcycled food choice factor in both groups was ethical concerns, followed by natural content, sensory appeal, price, healthiness, familiarity and impression. The Inclined group's mean importance score for ethical concern was higher than the Hesitant group (p(value)<0.001) and, except for natural content, the mean importance scores for the other factors were higher in the Hesitant group compared to the Inclined group (p(value)<0.05). Participants who perceived ethical concern as an important factor had lower odds of hesitancy (Odds ratio = 0.39; 95%CI:0.26,0.59; p(value)<0.001), and those who considered sensory appeal an important factor had higher odds of hesitancy (Odds ratio = 2.42; 95%CI:1.62,3.63; p(value)<0.001) towards upcycled food consumption compared to participants who did not consider these as important factors.

    Originality/value

    This is the first study investigating health and non-health-related upcycled food choice motives using a food choice questionnaire. Identifying these motives helps food developers and researchers determine factors influencing upcycled food consumption.

     

  • 4.
    Hellwig, Coralie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Häggblom-Kronlöf, Greta
    Institute of Neuroscience and Physiology, Section for Health and Rehabilitation, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Aspects Affecting Food Choice in Daily Life as Well as Drivers and Barriers to Engagement with Fungi-Based Food: A Qualitative Perspective2022In: Sustainability, E-ISSN 2071-1050, Vol. 15, no 1, article id 317Article in journal (Refereed)
    Abstract [en]

    Fungi-based food is expected to contribute to more sustainable food systems. The present study has three focus areas: (i) aspects that affect food choices food in daily life, (ii) aspects that affect choices of fungi-based food in particular, and (iii) drivers that motivate, and barriers that prevent, engagement in cultivating fungi and cooking fungi-based food at home. One hundred and sixty participants, who were recruited using convenience sampling, filled out qualitative questionnaires. The results show that there are numerous aspects (e.g., environmental benefits, nutrition, sensory characteristics, production practices and ingredients) that are important when people choose food in daily life. In addition to curiosity, many of these aspects also affect the choice of fungi-based food. The study identified more drivers (e.g., self-providing, curiosity, awareness of ingredients) than barriers (time, knowledge, concerns about contamination) to cultivation and cooking of fungi-based food at home. The findings are relevant for the development of fungi-based food so that this type of food is engaged with, and so that it can contribute to more sustainable food systems.

  • 5.
    Hellwig, Coralie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lundin, Magnus
    University of Borås, Faculty of Textiles, Engineering and Business.
    Häggblom-Kronlöf, Greta
    Göteborgs universitet.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Aspects that Affect Tasting Studies of Emerging Food: A Review2022In: Future Foods, ISSN 2666-8335, Vol. 5, article id 100109Article, review/survey (Refereed)
    Abstract [en]

    Providing food security to the growing global population, and the resource depletion associated with current food systems, let to calls for more sustainable food sources. Food that can be produced in a sustainable way (taking all three aspects of sustainable development into consideration) is currently emerging in Western societies. Through tastings, insight can be gathered not only into sensory characteristics but also other aspects that aid innovation and development of food. The current study identified aspects that can affect tastings of emerging food by reviewing relevant literature. General aspects; meat alternatives; ingredients or processing technologies; information, prior knowledge and (un)familiarity; taste and liking; emotional factors; and willingness to engage with emerging food can affect tastings of emerging food. Awareness of the effect that these aspects can have on methodological considerations and results can be constructive in future research that use tastings as a platform to develop new and emerging food. The findings are significant for food science in terms of cornerstones towards potential industrial applications. These include innovating new types of food, assessing most effective technologies in the context of such food, developing new products, and understanding engagement with emerging food products.

    Download full text (pdf)
    fulltext
  • 6.
    Kadawo, Abdinasir
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sadagopan, Madumita
    University of Borås, Faculty of Textiles, Engineering and Business.
    During, Otto
    RISE CBI Cement and Concrete Research Institute.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nagy, Agnes
    University of Borås, Faculty of Textiles, Engineering and Business.
    Combination of LCA and circularity index for assessment of environmental impact of recycled aggregate concrete2022In: Journal of Sustainable Cement-Based Materials, ISSN 2165-0373, E-ISSN 2165-0381Article in journal (Refereed)
    Abstract [en]

    Multidisciplinary approach is used to evaluate concrete with recycled concrete aggregates (RCA) from technical, environmental impacts and product circularity perspectives. Two RCA replacements investigated, RAC50: fine aggregates; RAC100: both coarse, fine aggregates. Reference, recycled concretes have same cement content, similar workability and compressive strength requirement, proven experimentally. RCA is sourced from pre-fab element discards of a Swedish plant, the logistical alternatives requiring environmental impact analysis. Alternatives are RCA crushing at plant and crushing at a different location including transportation. LCA shows transportation is second largest contributor after cement in all impact categories. RAC alternatives show lower total impact than reference concrete due to RCA replacement. A circularity index for concrete based on economic value of recirculated aggregates; supplements LCA for sustainability reporting. Circularity index results: RAC100 > RAC50 > RC. Combining circularity index with LCA helps optimize recycling process with regard to amount of recycled material and logistics respectively.

  • 7.
    Nemat, Babak
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Razzaghi, Mohammad
    Department of Industrial Design, Faculty of Applied Arts, University of Art, Tehran, Iran.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Design affordance of plastic food packaging for consumer sorting behavior2022In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 177Article in journal (Refereed)
    Abstract [en]

    This research aims to understand why consumers miss-sort plastic food packaging and to what extent the design affordance of packaging can influence consumer sorting behavior. A photo-based observation study and semi-structured interviews were used to gain a deeper understanding of the miss-sorting behavior and how it could be affected by design affordance. This explorative study suggested that the packaging form, size, durability, haptic aspects, and visual communicative properties influence how consumers perceive the value of packaging. This is important, because packaging with low attributed values are not considered worth recycling or correctly sorted and are more likely to be miss-sorted. Hence, a well-afforded food packaging design is expected to improve how consumers perceive the value of packaging and to consequently improve sorting behavior.

  • 8.
    Hellwig, Coralie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Neda
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wikandari, Rachma
    Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Häggblom-Kronlöf, Greta
    Institute of Neuroscience and Physiology, Section for Health and Rehabilitation, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Household fermentation of leftover bread to nutritious food2022In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 150, p. 39-47Article in journal (Refereed)
    Abstract [en]

    Resource dependency of food production is aggravated when food is wasted. In Sweden, it is estimated that 37% of the total bread waste is generated at the household level. This work aimed to assess whether fermentation using edible filamentous fungi at households can provide a solution to valorize leftover bread in the production of fungi-based food for consumption. Bread was fermented in household and laboratory conditions with Neurospora intermedia and Rhizopus oligosporus. The results show that bread can be successfully and easily fermented at households, without signs of microbial contamination even though the conditions were not sterile. Fermentation at the household resulted in higher protein, fat and fiber content as well as greater starch reduction compared to the samples fermented under laboratory conditions. Household engagement in bread fermentation will likely depend on values that motivate reusing leftover bread. Perceived values that are expected to motivate engagement vary across individuals, but may include improved nutritional benefits, food waste prevention, convenience, responsibilities, and being part of sustainable societies and actions.

    Download full text (pdf)
    fulltext
  • 9.
    Moshtaghian, Hanieh
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Challenges for Upcycled Foods: Definition, Inclusion in the Food Waste Management Hierarchy and Public Acceptability2021In: Foods, E-ISSN 2304-8158, Vol. 10, no 11Article, review/survey (Refereed)
    Abstract [en]

    Upcycled foods contain unmarketable ingredients (e.g., damaged food produce, by-products and scraps from food preparation) that otherwise would not be directed for human consumption. Upcycled food is a new food category and thus faces several challenges, such as definition development, inclusion in the food waste management hierarchy and public acceptability. This review provides an overview of these three challenges. The upcycled food definitions have been developed for research, food manufacturers, and multi-stakeholders use. Thus, there is a need for a consumer-friendly definition for the general public. A simplified definition is proposed to introduce these foods as environmentally friendly foods containing safe ingredients that otherwise would not have gone to human consumption such as damaged food produce, by-products and scraps from food preparation. Moreover, an updated version of the food waste management hierarchy has been proposed by including the production of upcycled foods as a separate waste management action that is less preferable than redistribution but more favourable than producing animal feed. Furthermore, consumer sociodemographic characteristics and beliefs, as well as food quality cues and attributes, were identified as crucial factors for the public acceptability of these foods. Future research should address these challenges to facilitate the introduction of upcycled foods.

  • 10.
    Kalyanasundaram, M.
    et al.
    Division of Environmental Health and Epidemiology, ICMR – National Institute for Research in Environmental Health, Bhopal, 462 030, India.
    Sabde, Y.
    Division of Environmental Health and Epidemiology, ICMR – National Institute for Research in Environmental Health, Bhopal, 462 030, India.
    Annerstedt, K. S.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Singh, S.
    Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR – National Institute for Research in Environmental Health, Bhopal, 462 030, India.
    Sahoo, K. C.
    ICMR- Regional Medical Research Centre, Bhubaneshwar, 751023, India.
    Parashar, V.
    Department of Public Health and Environment, RD Gardi Medical College, Ujjain, 456006, India.
    Purohit, M.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Pathak, A.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Lundborg, C. S.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Atkins, S.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Diwan, V.
    Department of Global Public Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
    Effects of improved information and volunteer support on segregation of solid waste at the household level in urban settings in Madhya Pradesh, India (I-MISS): protocol of a cluster randomized controlled trial2021In: BMC Public Health, E-ISSN 1471-2458, Vol. 21, no 1, article id 694Article in journal (Refereed)
    Abstract [en]

    Background: Segregation of household waste at the source is an effective and sustainable strategy for management of municipal waste. However, household segregation levels remain insufficient as waste management approaches are mostly top down and lack local support. The realisation and recognition of effective, improved and adequate waste management may be one of the vital drivers for attaining environmental protection and improved health and well-being. The presence of a local level motivator may promote household waste segregation and ultimately pro-environmental behaviour. The present cluster randomized control trial aims to understand if volunteer based information on waste segregation (I-MISS) can effectively promote increased waste segregation practices at the household level when compared with existing routine waste segregation information in an urban Indian setting.

    Methods: This paper describes the protocol of an 18 month two-group parallel,cluster randomised controlled trialin the urban setting of Ujjain, Madhya Pradesh, India. Randomization will be conducted at ward level, which is the last administrative unit of the municipality. The study will recruit 425 households in intervention and control groups. Assessments will be performed at baseline (0 months), midline (6 months), end line (12 months) and post intervention (18 months). The primary outcome will be the comparison of change in proportion of households practicing waste segregation and change in proportion of mis-sorted waste across the study period between the intervention and control groups as assessed by pick analysis. Intention to treat analysis will be conducted. Written informed consent will be obtained from all participants.

    Discussion: The present study is designed to study whether an external motivator, a volunteer selected from the participating community and empowered with adequate training, could disseminate waste segregation information to their community, thus promoting household waste segregation and ultimately pro-environmental behaviour. The study envisages that the volunteers could link waste management service providers and the community, give a local perspective to waste management, and help to change community habits through information, constant communication and feedback.

    Trial registration: The study is registered prospectively with Indian Council of Medical Research- Clinical Trial Registry of India (CTRI/2020/03/024278). 

    Download full text (pdf)
    fulltext
  • 11.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Gmoser, Rebecca
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    The use of life cycle assessment in the support of the development of fungal food products from surplus bread2021In: Fermentation, ISSN 2311-5637, Vol. 7, no 3, article id 173Article in journal (Refereed)
    Abstract [en]

    The use of food waste as feedstock in the manufacture of high-value products is a promising avenue to contribute to circular economy. Considering that the majority of environmental impacts of products are determined in the early phases of product development, it is crucial to integrate life cycle assessment during these phases. This study integrates environmental considerations in the development of solid-state fermentation based on the cultivation of N. intermedia for the production of a fungal food product using surplus bread as a substrate. The product can be sold as a ready-to-eat meal to reduce waste while generating additional income. Four inoculation scenarios were proposed, based on the use of bread, molasses, and glucose as substrate, and one scenario based on backslopping. The environmental performance was assessed, and the quality of the fungal product was evaluated in terms of morphology and protein content. The protein content of the fungal food product was similar in all scenarios, varying from 25% to 29%. The scenario based on backslopping showed the lowest environmental impacts while maintaining high protein content. The results show that the inoculum production and the solid-state fermentation are the two environmental hotspots and should be in focus when optimizing the process. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

    Download full text (pdf)
    fulltext
  • 12.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Eriksson, Mattias
    Department of Energy and Technology, Swedish University of Agricultural Science, Box 7032, 750 07 Uppsala, Sweden.
    Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden2020In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 117, p. 136-145Article in journal (Refereed)
    Abstract [en]

    Bread waste represents a significant part of food waste in Sweden. At the same time, the return system established between bakeries and retailers enables a flow of bread waste that is not contaminated with other food waste products. This provides an opportunity for alternative valorisation and waste management options, in addition to the most common municipal waste treatment, namely anaerobic digestion and incineration. An attributional life cycle assessment of the management of 1 kg of surplus bread was conducted to assess the relative environmental impacts of alternative and existing waste management options. Eighteen impact categories were assessed using the ReCiPe methodology. The different management options that were investigated for the surplus bread are donation, use as animal feed, beer production, ethanol production, anaerobic digestion, and incineration. These results are also compared to reducing the production of bread by the amount of surplus bread (reduction at the source). The results support a waste hierarchy where reduction at the source has the highest environmental savings, followed by use of surplus bread as animal feed, donation, for beer production and for ethanol production. Anaerobic digestion and incineration offer the lowest environmental savings, particularly in a low-impact energy system. The results suggests that Sweden can make use of the established return system to implement environmentally preferred options for the management of surplus bread.

    Download full text (pdf)
    fulltext
  • 13.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Eriksson, Mattias
    Life-Cycle Assessment and Sustainability Aspects of Food Waste2020In: Sustainable Food Waste Management: Resource Recovery and Treatment / [ed] Ashok Pandey, Elsevier, 2020Chapter in book (Refereed)
  • 14. Mehner, Eric
    et al.
    Naidoo, Adeel
    Hellwig, Coralie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    The Influence of User-Adapted, Instructive Information on Participation in a Recycling Scheme: A Case Study in a Medium-Sized Swedish City2020In: Recycling, E-ISSN 2313-4321, Vol. 5, no 2Article in journal (Refereed)
    Abstract [en]

    Several theories and case studies have shown that information has little or no direct influence on waste sorting behavior. However, it is often suggested that information plays a vital role by indirectly influencing behavior. This contribution sheds light on how instructive information influences users of a recycling scheme in terms of perception, knowledge and waste sorting behavior. The study was performed as a case study on a student population in a medium-sized city in Sweden. An intervention in the form of modified information that was provided to the users was studied. This information was instructive in nature and adapted to the participants’ needs using the Recycling Behavior Transition procedure, where the users are involved in the development and modification of recycling schemes. New information was designed after investigating how the participants perceived the original information on correct waste sorting, as well as ascertaining their preferred channel for providing the information. Pick analyses and surveys were conducted before and after providing the user-adapted information. The results indicated a trend towards correct participation in the recycling scheme. These results are also discussed in the theoretical context of the Motivation-Opportunity-Ability-Behavior model. The study shows that user-adapted, instructive information can have a significant influence on people’s knowledge of correct waste separation and their overall perception of information.

    Download full text (pdf)
    fulltext
  • 15.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lundin, Magnus
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Eriksson, Mattias
    Bread loss rates at the supplier-retailer interface – Analysis of risk factors tosupport waste prevention measures2019In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, p. 128-136Article in journal (Refereed)
    Abstract [en]

    This paper quantifies bread waste throughout the Swedish supply chain and investigates the loss rate of prepackagedbread products at the supplier-retailer interface. The goal is to understand the extent of bread waste inSweden and to identify risk factors for high quantities of waste at the supplier-retailer interface, in order toprovide information supporting waste prevention measures. The study uses primary data, in combination withnational statistics and data from sustainability reports and the literature. Primary data were collected from 380stores of a Swedish retail company and a bakery. Bread waste was calculated to be 80 410 tons/year in Sweden,the equivalent of 8.1 kg per person/year, and was found to be concentrated at households and in retail, specificallyat the supplier-retailer interface. The results provide evidence that take-back agreements between suppliersand retailers, where the retailer only pays for sold products and the supplier bears the cost of the unsoldproducts and their collection and treatment, are risk factors for high waste generation. Current business modelsmay need to be changed to achieve a more sustainable bread supply chain with less waste.

  • 16.
    Hellwig, Coralie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Häggblom-Kronlöf, Greta
    University of Gothenburg.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Household Waste Sorting and Engagement in Everyday Life Occupations After Migration—A Scoping Review2019In: Sustainability, E-ISSN 2071-1050, Vol. 11, no 17, article id 4701Article in journal (Refereed)
    Abstract [en]

    The aim of this scoping review was to gain an overview of the current state of the literature on the engagement in waste sorting post migration from an occupational perspective, in the light of two aspects sustainability efforts currently face: Increased human migration and environmental degradation. Both the resource recovery and occupational science literature were reviewed and analyzed. However, despite the current lack on studies on how migrants’ transition into waste sorting schemes at the household level, this scoping review was able to provide a broad picture of the engagement in daily activities that support sustainability, such as household waste sorting. Given the current initiatives to develop efficient resource recovery from waste, such knowledge contributes to efforts to engage households with different cultures and experiences in waste sorting. The results highlight the importance of future research to better understand how people who are new to waste management schemes experience these, and study the way that engagement in waste sorting shifts and transforms. This is because providing such knowledge can contribute to raising awareness of the environmental impact of waste sorting, and inform policies aimed at sustainable waste management.

    Download full text (pdf)
    fulltext
  • 17.
    Brancoli, Pedro
    University of Borås, Faculty of Textiles, Engineering and Business.
    Life Cycle Assessment of Waste Management Systems2019In: Sustainable Resource Recovery and Zero Waste Approaches / [ed] Mohammad J. Taherzadeh, Kim Bolton, Jonathan Wong and Ashok Pandey, Elsevier, 2019Chapter in book (Refereed)
  • 18.
    Ferreira, Jorge
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Brancoli, Pedro
    University of Borås, Faculty of Textiles, Engineering and Business.
    Agnihotri, Swarnima
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes2018In: Process Biochemistry, ISSN 1359-5113, E-ISSN 1873-3298, Vol. 75, p. 173-186Article in journal (Refereed)
    Abstract [en]

    First-generation ethanol plants offer successful, commercial-scale bioprocesses that can, at least partially, replace fossil fuels. They can act as platforms to integrate lignocelluloses, wastes and residuals when establishing 2nd generation ethanol. The present review gathers recent insights on the integration of intrinsic and extrinsic substrates into lot generation ethanol plants, through microbial conversion or cogeneration systems. It shows that, among different lot generation ethanol plants, sugar-based ethanol by-products, dominate integration studies characterized by strong techno-economic and life-cycle assessment components. In comparison, there are fewer studies that focus on grain-derived lignocellulosic residuals and other wastes. There is consensus that integrating second generation feedstocks into first generation plants can have positive techno-economic and environmental impacts. In addition to realizing production of ethanol from 2nd generation feedstocks, these possibilities can impact waste management by establishing relevant biorefineries and circular economy. They can also supply a wide range of renewable products. Considering the potential of this waste management strategy, further research on these and many other substrates is needed. This will shed light on the effect of the integration, the relevant types of microorganisms and pretreatments, and of other physical parameters on the effectiveness of running lot generation plants with integrated second generation feedstocks.

  • 19.
    Arja, Mina
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Akbar Mirzaei, Ali
    University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
    Mahmood Davarpanah, Abdol
    University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
    Masoud Barakati, Seyed
    University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
    Mohsenzadeh, Abas
    University of Borås, Faculty of Textiles, Engineering and Business.
    Atashi, Hossein
    University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    DFT studies of hydrocarbon combustion on metal surfaces2018In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 24, p. 47-Article in journal (Refereed)
  • 20.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ferreira, Jorge A.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Changes in carbon footprint when integrating production of filamentous fungi in 1st generation ethanol plants2017In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976Article in journal (Refereed)
    Abstract [en]

    Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact.

  • 21.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Life cycle assessment of supermarket food waste2017In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 118, p. 39-46Article in journal (Refereed)
    Abstract [en]

    Retail is an important actor regarding waste throughout the entire food supply chain. Although it produces lower amounts of waste compared to other steps in the food value chain, such as households and agriculture, it has a significant influence on the supply chain, including both suppliers in the upstream processes and consumers in the downstream. The research presented in this contribution analyses the impacts of food waste at a supermarket in Sweden. In addition to shedding light on which waste fractions have the largest environmental impacts and what part of the waste life cycle is responsible for the majority of the impacts, the results provide information to support development of strategies and actions to reduce of the supermarket's environmental footprint. Therefore, the food waste was categorised and quantified over the period of one year, the environmental impacts of waste that were generated regularly and in large amounts were assessed, and alternative waste management practices were suggested. The research revealed the importance of not only measuring the food waste in terms of mass, but also in terms of environmental impacts and economic costs. The results show that meat and bread waste contributes the most to the environmental footprint of the supermarket. Since bread is a large fraction of the food waste for many Swedish supermarkets, this is a key item for actions aimed at reducing the environmental footprint of supermarkets. Separation of waste packaging from its food content at the source and the use of bread as animal feed were investigated as alternative waste treatment routes and the results show that both have the potential to lead to a reduction in the carbon footprint of the supermarket.

  • 22.
    Rousta, Kamran
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ordoñez, Isabel
    Chalmers University of Technology.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Dahlén, Lisa
    Luleå University of Technology.
    Support for designing waste sorting systems: A mini review2017In: Waste Management & Research, ISSN 0734-242X, E-ISSN 1096-3669, Vol. 35, no 11, p. 1099-1111Article in journal (Refereed)
    Abstract [en]

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  • 23.
    Souza Filho, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Brancoli, Pedro
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Techno-Economic and Life Cycle Assessment of Wastewater Management from Potato Starch Production: Present Status and Alternative Biotreatments2017In: Fermentation, Vol. 3, no 4Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 24.
    Erdtman, Edvin
    et al.
    Linköping Universitet.
    Bohlén, Martin
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ahlström, Peter
    University of Borås, Faculty of Textiles, Engineering and Business.
    Gkourmpis, Thomas
    Borealis AB.
    Berlin, Mikael
    Tetra Pak Packaging Solutions AB.
    Andersson, Thorbjörn
    Tetra Pak Packaging Solutions AB.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    A molecular-level computational study of the diffusion and solubility of water and oxygen in carbonaceous polyethylene nanocomposites2016In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 54, p. 589-602Article in journal (Refereed)
    Abstract [en]

    Monte Carlo and molecular dynamics simulations were performed to investigate the effect on the solubility, diffusion, and permeability of water and oxygen when adding graphene or single-walled carbon nanotubes (SWCNTs) to polyethylene (PE). When compared with pure PE, addition of graphene lowered the solubility of water, whereas at lower temperatures, the oxygen solubility increased because of the oxygen–graphene interaction. Addition of SWCNTs lowered the solubility of both water and oxygen when compared with pure PE. A detailed analysis showed that an ordered structure of PE is induced near the additive surface, which leads to a decrease in the diffusion coefficient of both penetrants in this region. The addition of graphene does not change the permeation coefficient of oxygen (in the direction parallel to the filler) and, in fact, may even increase this coefficient when compared with pure PE. In contrast, the water permeability is decreased when graphene is added to PE. The addition of SWCNTs decreases the permeability of both penetrants. Graphene can consequently be added to selectively increase the solubility and permeation of oxygen over water, at least at lower temperatures. 

  • 25.
    Rousta, Kamran
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Dahlén, Lisa
    Luleå University of Technology.
    A Procedure to Transform Recycling Behavior for Source Separation of Household Waste2016In: Recycling, ISSN 2072-4292, Vol. 1, no 1, p. 147-165Article in journal (Refereed)
    Abstract [en]

    Household waste separation at the source is a central part of waste management systems in Sweden. Resource recovery of materials and energy increased substantially after separate collection was implemented in the 1990s. A procedure to transform recycling behavior for the sorting of household waste—called the recycling behavior transition (RBT) procedure—was designed and implemented in a waste management system in Sweden. Repeated use of this procedure, which will assist in the continual improvement of household sorting, consists of the following four consecutive steps: (i) evaluating the current sorting behavior; (ii) identifying appropriate interventions; (iii) implementing the interventions, and; (iv) assessing the quantitative effect of the interventions. This procedure follows action research methodology and it is the first time that such a procedure has been developed and implemented for the sorting of household waste. The procedure can easily be adapted to any source separation system (which may have different local situations) and, by improving the source separation, will increase the resource recovery in the waste management system. The RBT procedure, together with its strengths and weaknesses, is discussed in this paper, and its implementation is exemplified by a pilot study done in Sweden.

    Download full text (pdf)
    fulltext
  • 26.
    Mohsenzadeh, Abas
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Richards, Tobias
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    DFT study of the water gas shift reaction on Ni (111), Ni (100) and Ni (110) surfaces2016In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 644, p. 53-63Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) calculations were used to study the water gas shift (WGS) reaction on Ni(111), Ni(100) and Ni(110) surfaces. The adsorption energy for ten species involved in thereaction together with activation barriers and reaction energies for the nine most important elementary steps were determined using the same model and DFT methods. The results reveal that these energies are sensitive to the surface structure. In spite of this, the WGS reaction occurs mainly via the direct (also referred to as redox) pathway with the CO + O → CO2 reaction as the rate determining step on all three surfaces. The activation barrier obtained for this rate limiting step decreases in the order Ni(110) > Ni(111) > Ni(100). Therefore, if O species are present on the surfaces then the WGSreaction is fastest on the Ni(100) surface. However, the barrier for desorption of H2O (which is the source of the O species) is lower than its dissociation reaction on the Ni(111) and Ni(100) surfaces, but not on the Ni(110) surface. Hence, at low H2O(g) pressures, the direct pathway on the Ni(110) surface will dominate and will be the rate limiting step. The calculations also show that the reason that the WGS reaction does not primarily occur via the formate pathway is that this species is a stable intermediate on all surfaces. The reactions studied here support the Brønsted-Evans-Polanyi (BEP) principles with an R2 value of 0.99. © 2015 Elsevier B.V. All rights reserved.

  • 27.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Environmental impacts of supermarket food waste in a life cycle perspective2016Conference paper (Other academic)
  • 28.
    Brancoli, Pedro
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rousta, Kamran
    University of Borås, Faculty of Textiles, Engineering and Business.
    LCA as a Supporting Tool for Supermarket Food Waste Management2016Conference paper (Other academic)
  • 29.
    Wand, Charlie
    et al.
    University of Cambridge.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Negative thermal expansion of poly(vinylidene fluoride) and polyethylene tie molecules: A molecular dynamics study2016In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 54, p. 2223-2232Article in journal (Refereed)
    Abstract [en]

    The mechanism of thermal actuation for poly(vinylidene fluoride) (PVDF) and polyethylene (PE) tie molecules has been investigated using molecular dynamics simulations. Tie molecules are found in semicrystalline polymers and are polymer chains that link two (or more) crystalline lamellae, allowing for the transfer of force between these regions. A novel simulation technique has been developed to enable measurement of changes in the tie molecule length upon heating. We investigate the dependence of the percentage actuation observed upon heating, on the external applied force that stretches the tie molecules, the temperature range used for heating as well as the length and the number of tie molecules. Two molecular level mechanisms for actuation are identified. An entropically driven mechanism occurs at low applied forces and is applicable to all flexible polymers. A second mechanism due to conformational changes is observed for PVDF but not for PE at intermediate applied forces.

  • 30.
    Bolton, Kim
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    De Mena, Barbara
    ttz Bremerhaven.
    Schories, Gerhard
    ttz Bremerhaven.
    Sustainable Management of Solid Waste2016In: Resource Recovery to approach zero municipal wastes / [ed] M. J. Taherzadeh and T. Richards, CRC Press, 2016, p. 23-41Chapter in book (Refereed)
  • 31.
    Mohsenzadeh, Abas
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Richards, Tobias
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    A density functional theory study of hydrocarbon combustion and synthesis on Ni surfaces2015In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 21, no 3Article in journal (Refereed)
    Abstract [en]

    Combustion and synthesis of hydrocarbons may occur directly (CH → C + H and CO → C + O) or via a formyl (CHO) intermediate. Density functional theory (DFT) calculations were performed to calculate the activation and reaction energies of these reactions on Ni(111), Ni(110), and Ni(100) surfaces. The results show that the energies are sensitive to the surface structure. The dissociation barrier for methylidyne (CH → C + H: catalytic hydrocarbon combustion) is lower than that for its oxidation reaction (CH + O → CHO) on the Ni(110) and Ni(100) surfaces. However the oxidation barrier is lower than that for dissociation on the Ni(111) surface. The dissociation barrier for methylidyne dissociation decreases in the order Ni(111) > Ni(100) > Ni(110). The barrier of formyl dissociation to CO and H is almost the same on the Ni(111) and Ni(110) surfaces and is lower compared to the Ni(100) surface. The energy barrier for carbon monoxide dissociation (CO → C + O: catalytic hydrocarbon synthesis) is higher than that of for its hydrogenation reaction (CO + H → CHO) on all three surfaces. This means that the hydrogenation to CHO is favored on these nickel surfaces. The energy barrier for both reactions decreases in the order Ni(111) > Ni(100) > Ni(110). The barrier for formyl dissociation to CH + O decreases in the order Ni(100) > Ni(111) > Ni(110). Based on these DFT calculations, the Ni(110) surface shows a better catalytic activity for hydrocarbon combustion compared to the other surfaces, and Ni is a better catalyst for the combustion reaction than for hydrocarbon synthesis, where the reaction rate constants are small. The reactions studied here support the BEP principles with R2 values equal to 0.85 for C-H bond breaking/forming and 0.72 for C-O bond breaking /forming reactions.

  • 32.
    Bazooyar, Faranak
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bohlén, Martin
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Computational Studies of Water and Carbon Dioxide Interactions with Cellobiose2015In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 21, p. 2553-Article in journal (Refereed)
    Abstract [en]

    B3LYP/6-311++G** with dispersion correction (DFT-D) was used to study local and global minimum energy structures of water (H2O) or carbon dioxide (CO2) bonding with a pair of cellobiose molecules. The calculations showed that neither the H2O nor the CO2 prefer to be between the cellobiose molecules, and that the minimum energy structures occur when these molecules bond to the outer surface of the cellobiose pair. The calculations also showed that the low energy structures have a larger number of inter-cellobiose hydrogen bonds than the high energy structures. These results indicate that penetration of H2O or CO2 between adjacent cellobiose pairs, which would assist steam or supercritical CO2 (SC-CO2) explosion of cellulose, is not energetically favored. Comparison of the energies obtained with DFT-D and DFT (the same method but without dispersion correction) show that both hydrogen bonds and van der Waals interactions play an important role in cellobiose-cellobiose interactions.

  • 33.
    Mohsenzadeh, Abas
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Richards, Tobias
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces2015In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 644, p. 53-63Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) calculations were used to study the water gas shift (WGS) reaction on Ni(111), Ni(100) and Ni(110) surfaces. The adsorption energy for ten species involved in the reaction together with activation barriers and reaction energies for the nine most important elementary steps were determined using the same model and DFT methods. The results reveal that these energies are sensitive to the surface structure. In spite of this, the WGS reaction occurs mainly via the direct (also referred to as redox) pathway with the CO + O → CO2 reaction as the rate determining step on all three surfaces. The activation barrier obtained for this rate limiting step decreases in the order Ni(110) > Ni(111) > Ni(100). Therefore, if O species are present on the surfaces then the WGS reaction is fastest on the Ni(100) surface. However, the barrier for desorption of H2O (which is the source of the O species) is lower than its dissociation reaction on the Ni(111) and Ni(100) surfaces, but not on the Ni(110) surface. Hence, at low H2O(g) pressures, the direct pathway on the Ni(110) surface will dominate and will be the rate limiting step. The calculations also show that the reason that the WGS reaction does not primarily occur via the formate pathway is that this species is a stable intermediate on all surfaces. The reactions studied here support the Brønsted–Evans–Polanyi (BEP) principles with an R2 value of 0.99.

  • 34.
    Lund, Anja
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bazooyar, Faranak
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wand, Charlie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Inducing piezoelectric beta-phase in PVDF for fibre- and printed sensors2015Conference paper (Other academic)
  • 35.
    Lund, Anja
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Melvinsson, Rebecca
    Malm, Veronica
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wand, Charlie
    The University of Manchester · School of Chemical Engineering and Analytical Science.
    Tahir, Mohammad Waseem
    Högskolan i Skövde.
    Skrifvars, Mikael
    Stigh, Ulf
    Högskolan i Skövde.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nierstrasz, Vincent
    University of Borås, Faculty of Textiles, Engineering and Business.
    Melt Spun PVDF Actuator Fibres: the Effect of Spin-Line Orientation and MW on Actuation2015In: Regional Conference Polymer Processing Society Graz 2015: Book of Abstracts, 2015, p. 306-Conference paper (Other academic)
    Abstract [en]

    This paper presents the melt spinning and characterisation of polymer actuator fibres; fibres that reversibly contract along the fibre axis in response to heat. Recently, Haines et al (1) showed that low-cost filaments, e.g. fishing lines, can be relevant precursors for artificial muscles. They demonstrated a reversible fibre-direction thermal contraction, which was significantly amplified when the fibres were twisted and coiled. The effect was explained to result from an increase in the conformational entropy of the amorphous phase. In earlier studies on negative thermal expansion in anisotropic polymer structures, it has been shown that the negative thermal expansion in oriented highly crystalline polymers approaches values typical of polymer crystals (2).

     

    To further investigate the mechanisms behind these seemingly simple artificial muscles, we have melt spun fibres from poly(vinylidene fluoride) (PVDF) – Solef  1006 and 1008 kindly provided by Solvay (Milan, Italy) – and compared their properties to a commercially available PVDF-fishing line. The fibres were characterised with respect to their thermal actuation properties, crystal morphology and degree of orientation along the spin-line axis.

     

    We have further done modelling on the molecular and macroscopic levels examining the possible mechanisms of negative thermal expansion in semi-crystalline PVDF. We believe that tie molecules (a polymer chain linking two crystalline regions) are the predominant factor influencing actuation. Two mechanisms are considered: an entropic effect and a conformational change effect. The entropic effect causes an increase in the elastic stiffness with an increase in temperature, effectively resulting in a contraction of a strained fibre. The conformational change effect is also expected to contribute to contraction as tie molecules, under strain, revert to their unloaded preferred conformation when heated.

    1. C. S. Haines et al., Artificial Muscles from Fishing Line and Sewing Thread. Science 343, 868-872 (2014).
    2. C. L. Choy et al., Negative Thermal Expansion in Oriented Crystalline Polymers. Journal of Polymer Science: Polymer Physics Edition 19, 335-352 (1981).
  • 36.
    Bazooyar, Faranak
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Molecular-level Simulations of Cellulose Steam Explosion2015In: Quantum Matter, ISSN 2164-7615, Vol. 4, no 2, p. 115-122Article in journal (Refereed)
    Abstract [en]

    Grand canonical Monte Carlo and molecular dynamics simulations are used to study steam explosion of crystalline cellulose using 100, 160, 210 and 250 °C saturated steam. The simulations are based on the COMPASS force field, which provides a valid description of the cellulose crystal structure and water-cellobiose interactions. Disruption of the crystal structure during steaming is typically larger than that during the explosion stage and the restructuring is larger at increased temperature and pressure. This is seen by an increased separation of the cellulose chains from the center of mass of the crystal during the initial stages of the steaming, especially for chains in the outer shell of the elementary fibril. There is a large change in the radius of gyration and fraction of anti torsion angle conformers for chains in the outer shell of the elementary fibril. In addition, the disruption at the reducing and non-reducing ends of the cellulose crystal is larger than in the central core, increasing susceptibility to enzymatic attack in these end regions.

  • 37.
    Mohsenzadeh, Abas
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Richards, Tobias
    University of Borås, Faculty of Textiles, Engineering and Business.
    Oxidation and dissociation of formyl on Ni(111), Ni(110) and Ni(100) surfaces: A comparative density functional theory (DFT) study2015In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 58, no 14-17, p. 1136-1149Article in journal (Refereed)
  • 38.
    Rousta, Kamran
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bolton, Kim
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lundin, Magnus
    University of Borås, Faculty of Textiles, Engineering and Business.
    Dahlén, Lisa
    Quantitative assessment of distance to collection point and improved sorting information on source separation of household waste2015In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 40, no 0, p. 22-30Article in journal (Refereed)
    Abstract [en]

    The present study measures the participation of households in a source separation scheme and, in particular, if the household’s application of the scheme improved after two interventions: (a) shorter distance to the drop-off point and (b) easy access to correct sorting information. The effect of these interventions was quantified and, as far as possible, isolated from other factors that can influence the recycling behaviour. The study was based on households located in an urban residential area in Sweden, where waste composition studies were performed before and after the interventions by manual sorting (pick analysis). Statistical analyses of the results indicated a significant decrease (28%) of packaging and newsprint in the residual waste after establishing a property close collection system (intervention (a)), as well as significant decrease (70%) of the miss-sorted fraction in bags intended for food waste after new information stickers were introduced (intervention (b)). Providing a property close collection system to collect more waste fractions as well as finding new communication channels for information about sorting can be used as tools to increase the source separation ratio. This contribution also highlights the need to evaluate the effects of different types of information and communication concerning sorting instructions in a property close collection system.

  • 39.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Conformational studies of poly(vinylidene fluoride), poly(trifluoroethylene) and poly(vinylidene fluoride-co-trifluoroethylene) using density functional theory2014In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 25, p. 12929-12939Article in journal (Refereed)
    Abstract [en]

    Different conformations of systems consisting of poly(vinylidene fluoride) (PVDF), poly(trifluoroethylene) (PTrFE) and poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) were investigated using density functional theory with dispersion correction. It was found that the trans-gauche-trans-gauche´ (TGTG´) conformation of a single PVDF chain is the lowest energy conformer. Crystals of PVDF were modelled using between two to five chains with up to 12 repeat units in each chain and, in agreement with experiment, structures comprised partly or completely of chains with the TGTG´ conformation are more stable than structures built up from chains with all-trans (TTTT) conformation. This indicates that an all-trans segment or chain will not induce the growth of a larger crystal with the same chain conformations. In contrast, the energetically preferred structure of PTrFE chains is an all-trans (TTTT) conformation, and the results indicate that copolymerization of vinylidene fluoride with trifluoroethylene can facilitate the formation of the all-trans PVDF conformations. This is probably due to increased intramolecular repulsion between the fluorine atoms and an increased intermolecular attraction in the crystal structure.

  • 40.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Richards, Tobias
    University of Borås, School of Engineering.
    Mohsenzadeh Syouki, Abas
    University of Borås, School of Engineering.
    DFT study of the adsorption and dissociation of water on Ni(111), Ni(110) and Ni(100) surfaces2014In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 627, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Water adsorption and dissociation on catalytic metal surfaces play a key role in a variety of industrial processes, and a detailed understanding of this process and how it is effected by the surface structure will assist in developing improved catalysts. Hence, a comparative study of the adsorption and dissociation of water on Ni(111), Ni(110) and Ni(100) surfaces, which is often used as catalyst, has been performed using density functional theory. The results show that the adsorption energies and dissociation rates depend on the surface structure. The adsorption energies for H2O and OH decrease in the order Ni(110) > Ni(100) > Ni(111), and for the O and H atoms the adsorption energies decrease in the order Ni(100) > Ni(111) > Ni(110). In addition, the splitting of water to OH and H has lower activation energies over less packed Ni(110) and Ni(100) surfaces compared to the highly packed Ni(111) surface. The subsequent splitting of the OH to O and H also has the lowest activation energy on the Ni(110) surface. At 463 K, which is typical for industrial processes that include the water gas shift reaction, the H2O splitting is approximately 6000 and 10 times faster on the Ni(110) surface compared to the Ni(111) and Ni(100) surfaces, respectively, and OH splitting is 200 and 3000 times faster, respectively. The complete water dissociation reaction rate decreases in the order Ni(110) > Ni(100) > Ni(111).

  • 41.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Effect of single wall carbon nanotubes on the conformation of Poly(vinylidene fluoride)2014In: Quantum Matter, ISSN 2164-7615, Vol. 3, no 4, p. 339-343Article in journal (Refereed)
    Abstract [en]

    Structures consisting of single Poly(vinylidene fluoride) (PVDF) chains, single wall carbon nanotubes (SWCNTs), a PVDF chain interacting with a SWCNT and of five PVDF chains arranged to resemble the α and β crystal structures of PVDF were evaluated using geometry optimizations and single point energy calculations. Density functional theory with dispersion correction was used for all calculations. The conformer of PVDF is the lowest energy structure, irrespective of whether the SWCNT is present or not. Interaction with the SWCNT reduces the energy difference between the β and α conformers by approximately 30%, indicating that SWCNTs can increase the relative amount of the β conformers at higher temperatures. However, even in the presence of the SWCNT this energy difference is approximately 1.67 kcal/mol per –CH2CF2– repeat unit, which is larger than kT at 300 K (0.6 kcal/mol). Hence, the presence of the SWCNTs is not expected to substantially increase the relative amount of the β conformers at these conditions. Compression of the α and β crystal structures, which occurs during fibre extrusion, and which may be increased if nanoparticles are present in the polymer matrix, further decreases the energy difference between the β and α conformers but only to a very small extent at pressures relevant to fibre extrusion.

  • 42.
    Mohsenzadeh, Abas
    et al.
    University of Borås, School of Engineering.
    Richards, Tobias
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Hydrocarbon combustion and synthesis on Ni(111), Ni(110) and Ni(100) surfaces: A comparative density functional theory study2014Conference paper (Other academic)
    Abstract [en]

    Combustion and synthesis of hydrocarbons may occur directly (CH → C + H and CO → C + O) via a formyl intermediate (CH + O → CHO followed by CHO → CO + H and CO + H → CHO followed by CHO → CH + O) . The activation and reaction energies of these reactions on the Ni(111), Ni(110) and Ni(100) surfaces were investigated using density functional theory (DFT). Calculations show that the barriers are sensitive to the surface structure. The barrier for CH dissociation (catalytic hydrocarbon combustion) is lower than that of for its oxidation reaction (CH + O → CHO) on the Ni(110) and Ni(100) surfaces. In contrast, the barrier for oxidation is lower than that for dissociation on the Ni(111) surface. This means CH will preferably dissociate on the Ni(110) and Ni(100) surfaces, but not on the Ni(111) surface. The barrier for dissociation increases in the order Ni(110) < Ni(100) < Ni(111). The barrier of CHO dissociation to CO and H is almost the same on the Ni(111) and Ni(110) surfaces and it is lower compared to the Ni(100) surface. The energy barrier for carbon monoxide dissociation (catalytic hydrocarbon synthesis) is higher than that of for its hydrogenation reaction on all three surfaces. This means that the hydrogenation to CHO favored over the nickel surfaces studied here. The barrier for both reactions increases in the order Ni(110) < Ni(100) < Ni(111). Formyl dissociation to CH + O barrier is the lowest on the Ni(110) surface and follows the order Ni(100) > Ni(111) > Ni(110). Our DFT results show that the Ni(110) surface has a larger catalytic activity compared to the other surfaces, and that Ni is a better catalyst for hydrocarbon combustion than synthesis.

  • 43.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Inducing the piezoelectric β-phase of PVDF: a DFT study2014Conference paper (Refereed)
  • 44.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Inducing the β-phase of poly(vinylidene fluoride): a review2014In: Annual Review of Nanoscience and Nanotechnology, ISSN 2159-9688, Vol. 1, no 1Article in journal (Refereed)
    Abstract [en]

    Poly(vinylidene fluoride) (PVDF) is a versatile material with numerous applications in many fields of industry and science. The extent of applications, ranging from approved contact materials in the food industry to monitors for respiration and heart-rate in medicine, drives the research and development by the materials science community. The largest limiting factor when using PVDF in applications where its piezo- and pyroelectricity is important, is the amount of the highly polar crystalline β-phase in the material. PVDF is polymorphic and usually crystallizes from melt or solution into the non-polar α-phase, which is of little use in piezoelectric applications. Many studies have therefore aimed at increasing the amount of the β-phase crystal structure in the material. Cold drawing of α-phase PVDF, poling in high electric fields, copolymerization with trifluoroethylene, and inclusion of different types of additives to PVDF have been studied using both experimental and computational techniques. This review presents the current status and understanding of these processes, and summarizes results from previous studies. © Global Scientific Publishers 2015.

  • 45. Lasich, Matthew
    et al.
    Mohammadi, Amir H.
    Bolton, Kim
    University of Borås, School of Engineering.
    Vrabec, Jadran
    Ramjugernath, Deresh
    Influence of unlike dispersion interactions in modeling methane clathrate hydrate2014In: Fluid Phase Equilibria, ISSN 0378-3812, E-ISSN 1879-0224, Vol. 381, p. 108-115Article in journal (Refereed)
    Abstract [en]

    Studies of the thermodynamic stability of clathrate hydrates of natural gas (mostly methane) is important in fields such as offshore gas exploitation and energy storage. Two approaches were used to study the effect of unlike dispersion interactions on methane clathrate hydrates: grand canonical Monte Carlo simulations (which yield adsorption data directly and can be used to infer phase equilibria), and estimation of the heat of dissociation coupled with the Clausius–Clapeyron equation (to calculate the phase equilibria, at the expense of providing no information about the adsorption behavior). It was found that the adsorption isotherm parameters change monotonically with respect to unlike dispersion interactions, although a perfect fit to experimentally-derived values may not be possible, at least using the force fields considered in this study. The heat of dissociation changes monotonically due to changes in the unlike dispersion interaction, and a best fit value of the Berthelot correction factor is achieved.

  • 46. Lasich, Matthew
    et al.
    Mohammadi, Amir H.
    Bolton, Kim
    University of Borås, School of Engineering.
    Vrabec, Jadran
    Ramjugernath, Deresh
    Lennard-Jones Corrections Applied to Lattice Distortion Calculations for Methane Clathrate Hydrate2014Conference paper (Refereed)
  • 47. Haghighatpanah, Shayesteh
    et al.
    Bohlén, Martin
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties2014In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 2, no 74Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics and molecular mechanics methods have been used to investigate additive – polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  • 48.
    Bazooyar, Faranak
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular-level Simulations of Cellulose Dissolution by Steam and SC-CO2 Explosion2014Conference paper (Refereed)
    Abstract [en]

    Dissolution of cellulose is an important but tough step in biofuel production from lignocellulosic materials. Steam and supercritical carbon dioxide (SC-CO2) explosion are two effective methods for dissolution of some lignocellulosic materials. Loading and explosion are the major processes of these methods. Studies of these processes were performed using grand canonical Monte Carlo and molecular dynamics simulations at different pressure/ temperature conditions on the crystalline structure of cellulose. The COMPASS force field was used for both methods. The validity of the COMPASS force field for the calculations was confirmed by comparing the energy and structures obtained from molecular mechanics simulations of cellobiose (the repeat unit of cellulose), water–cellobiose, water-cellobiose pair and CO2-cellobiose pair systems with those obtained from first principle calculations with and without dispersion correction. A larger disruption of the cellulose crystal structure was seen during loading than that during the explosion process. This is seen by an increased separation of the cellulose chains from the centre of mass of the crystal during the initial stages of the loading, especially for chains in the outer shell of the crystalline structure. Reducing and non-reducing ends of the cellulose crystal show larger disruption than the central core; this leads to increasing susceptibility to enzymatic attack in these end regions. There was also change from the syn to the anti torsion angle conformations, especially for chains in the outer cellulose shell. Increasing the temperature increases the disruption of the crystalline structure during loading and explosion.

  • 49. Lasich, Matthew
    et al.
    Mohammadi, Amir H.
    Bolton, Kim
    University of Borås, School of Engineering.
    Vrabec, Jadran
    Ramjugernath, Deresh
    On the application of binary correction factors in lattice distortion calculations for methane clathrate hydrate2014In: Philosophical Magazine, ISSN 1460-6992, Vol. 94, no 9, p. 974-990Article in journal (Refereed)
    Abstract [en]

    The lattice distortion theory of Zele and co-workers is an attractive method for amending calculated phase equilibria of clathrate hydrates, since only two molecular computations are required. The perturbation energy between the empty and loaded clathrate hydrate lattice is the quantity of interest. The effect of binary correction factors applied to the Lorentz and Berthelot com- bining rules for the intermolecular interaction between gas and water particles is investigated. There are clear trends for the perturbation energy and lattice constant in terms of the binary correction factors, although there is signi fi cant sensitivity to the force fi eld parameterization of the gas species.

  • 50.
    Mohsenzadeh, Abas
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Richards, Tobias
    University of Borås, School of Engineering.
    Oxidation and dissociation of formyl on Ni(111), Ni(110) and Ni(100) surfaces: A comparative density functional theory study2014Conference paper (Refereed)
    Abstract [en]

    Formyl (CHO) is an important adsorbate and a key intermediate in industrial processes such as water gas shift (WGS), Fischer Tropsch synthesis (FTS) and catalytic hydrocarbon combustion reactions. Density functional theory (DFT) with the PBE functional was used to calculate the adsorption, reaction and activation energies of formyl oxidation and dissociation on Ni(111), Ni(110) and Ni(100) surfaces. The results show that these energies are sensitive to the surface structure. The dissociation barrier for CHO → CH + O (FTS process) is higher than that for CHO → CO + H (catalytic combustion) on all three surfaces. This means that the dissociation to CO and H is kinetically favored. The dissociation reaction rate decreases in the order Ni(110) > Ni(111) > Ni(100) for both dissociation reactions. The formation of formate (CHO + O → HCOO), which is included in one of the pathways for the WGS reaction, has lowest activation energy on the Ni(111) surface, and the energy increases in the order Ni(111) < Ni(110) < Ni(100). However, the reaction rate at 463 K, which is a typical temperature for industrial processes that involve these reactions, is at least five orders of magnitude higher for the CHO → CO + H reaction than for the other two reactions, irrespective of the crystallographic structure of the Ni surface. This means that Ni surfaces studied here are better catalysts for this reaction. The results also show that the WGS reaction on a Ni catalyst does not primarily occur via the formate pathway.

  • 51. Erdtman, Edvin
    et al.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Berlin, Mikael
    Andersson, Thorbjörn
    Gkourmpis, Thomas
    Bolton, Kim
    University of Borås, School of Engineering.
    Penetration and absorption of small molecules in polymers2014Conference paper (Refereed)
  • 52. Erdtman, Edvin
    et al.
    Bohlén, Martin
    University of Borås, School of Engineering.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Gkourmpis, Thomas
    Berlin, Mikael
    Andersson, Thorbjörn
    Bolton Kim, Kim
    University of Borås, School of Engineering.
    Permeation of water and oxygen through carbonaceous PE composites2014Conference paper (Refereed)
  • 53. Lasich, Matthew
    et al.
    Mohammadi, Amir H.
    Bolton, Kim
    University of Borås, School of Engineering.
    Vrabec, Jadran
    Ramjugernath, Deresh
    Phase equilibria of methane clathrate hydrate from grand canonical Monte Carlo simulations2014In: Fluid Phase Equilibria, ISSN 0378-3812, E-ISSN 1879-0224, Vol. 369, p. 47-54Article in journal (Refereed)
    Abstract [en]

    The determination of conditions at which clathrate hydrates are thermodynamically stable is important in applications such as offshore gas exploitation and energy storage. Adsorbed gas molecules occupy different cavity types within the hydrate lattice and this plays a significant role in the thermodynamic stability of clathrate hydrates. The occupancy of cavities in the hydrate lattice can be studied by undertaking Grand Canonical Monte Carlo simulations. Such simulations were performed in this study for methane clathrate hydrate with several force fields. Langmuir-type adsorption isotherms were fitted to the results of the simulations. The use of a single type of adsorption site was validated for methane clathrate hydrate. The adsorption isotherms which were fitted to the results of the simulations were used to compute the clathrate hydrate phase equilibria, which compared favourably with results from the literature.

  • 54.
    Lasich, Matthew
    et al.
    University of Borås, School of Engineering.
    Mohammadi, Amir H.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Vrabec, Jadran
    University of Borås, School of Engineering.
    Ramjugernath, Deresh
    University of Borås, School of Engineering.
    Rapid Determination of Phase Equilibria of Clathrate Hydrates Using Molecular Simulations2014Conference paper (Refereed)
  • 55. Kasaini, Henry
    et al.
    Kekana, Paul Thabo
    Saghti, Amirali Alizadeh
    Bolton, Kim
    University of Borås, School of Engineering.
    Adsorption Characteristics of Cobalt and Nickel on Oxalate-Treated Activated Carbons in Sulphate Media2013Conference paper (Refereed)
    Download full text (pdf)
    FULLTEXT01
  • 56.
    Haghighatpanah, Shayesteh
    et al.
    University of Borås, School of Engineering.
    Mohsenzadeh, Abas
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Amara, H
    Bichara, C
    Computational studies of catalyst-free single walled carbon nanotube growth2013In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 139, no 5, p. 054308-1Article in journal (Refereed)
    Abstract [en]

    Semiempirical tight binding (TB) and density functional theory (DFT) methods have been used to study the mechanism of single walled carbon nanotube (SWNT) growth. The results are compared with similar calculations on graphene. Both TB and DFT geometry optimized structures of relevance to SWNT growth show that the minimum energy growth mechanism is via the formation of hexagons at the SWNT end. This is similar to the result for graphene where growth occurs via the formation of hexagons at the edge of the graphene flake. However, due to the SWNT curvature, defects such as pentagons are more stable in SWNTs than in graphene. Monte Carlo simulations based on the TB energies show that SWNTs close under conditions that are proper for growth of large defect-free graphene flakes, and that a particle such as a Ni cluster is required to maintain an open SWNT end under these conditions. The calculations also show that the proper combination of growth parameters such as temperature and chemical potential are required to prevent detachment of the SWNTs from the Ni cluster or encapsulation of the cluster by the feedstock carbon atoms.

  • 57.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Satyanarayana, Kavitha Chelakara
    Bolton, Kim
    University of Borås, School of Engineering.
    Computational Studies of Poly(vinylidene fluoride)-Single Wall Carbon Nanotube Systems2013In: Journal of Computational and Theoretical Nanoscience, ISSN 1546-1955, E-ISSN 1546-1963, Vol. 10, no 6, p. 1317-1325Article in journal (Refereed)
    Abstract [en]

    First principles and molecular mechanics methods have been used to study poly(vinylidene fluoride)—single wall carbon nanotube systems. First principles calculations (Møller-Plesset second order perturbation theory and density functional theory with B3LYP exchange correlation functional with and without dispersion correction) using short poly(vinylidene fluoride) segments and short hydrogen-capped single wall carbon nanotubes show that the polymer segments prefer to have the β-rather than the β-conformation both in the absence and presence of the single wall carbon nanotube. The lowest energy structure is obtained when the poly(vinylidene fluoride) has an β-conformation and is located parallel to the single wall carbon nanotube wall. In contrast to the Dreiding and Universal force fields, the COMPASS force field predicts the structures containing the β-conformation of poly(vinylidene fluoride) to be the lowest in energy in agreement with first principles results. The COMPASS force field was consequently used in preliminary studies of a longer poly(vinylidene fluoride) chain and a longer single wall carbon nanotube using molecular dynamics.

  • 58.
    Bohlén, Martin
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular Dynamics Studies of the Influence of Single Wall Carbon Nanotubes on the Mechanical Properties of Poly(vinylidene fluoride)2013In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 68, p. 73-80Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics simulations and geometry optimizations based on the Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field were performed to understand the effect of Single Wall Carbon Nanotubes (SWCNTs) on the mechanical properties of Poly(vinylidene fluoride) (PVDF). In particular, the Young’s modulus, bulk and shear modulus, pullout energy, pullout force, interfacial shear stress and interfacial bonding energy were calculated. The presence of the SWCNTs can increase the Young’s modulus of the systems studied here by 1 GPa in the direction of the SWCNT axis, although this depends on the distance between neighboring SWCNTs. The calculated interfacial shear stress was between 100 and 129 MPa, which is in agreement with results obtained for other SWCNT-polymer systems. The results, and in particular those obtained for the bulk and shear modulus, show that SWCNTs do not have a significant effect on the bulk mechanical properties. Functionalizing the SWCNTs may yield stronger adhesion between the nanotube and the polymer, thereby achieving improved mechanical properties. ⺠Computational studies using molecular dynamics and molecular mechanics. ⺠Effect of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride). ⺠Alignment of the nanotubes plays a crucial role for the reinforcing effect. ⺠When aligned, an increase in Young’s modulus of approximately 1 GPa could be observed. ⺠The interfacial shear stress was calculated to be in the range of 100–129 MPa.

  • 59. Bazooyar, Faranak
    et al.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Niklasson, C.
    Bolton, K.
    University of Borås, School of Engineering.
    Molecular modeling of cellulose dissolution2013In: Journal of Computational and Theoretical Nanoscience, ISSN 1546-1955, E-ISSN 1546-1963, Vol. 10, no 11, p. 2639-2648Article in journal (Refereed)
    Abstract [en]

    In this work we present computational studies that shed light on the molecular mechanism of the initial stages of cellulose dissolution in saturated steam, which is an important pretreatment step in the conversion of lignocellulose to biofuel. The COMPASS, Dreiding and Universal molecular mechanics force fields and the B3LYP density functional with 6-311G, 6-311++G(d,p) and 6-311++G(2d,2p) basis sets were used to study systems containing glucose, cellobiose and water. These molecular systems were studied since they are sufficiently small to perform the density functional theory calculations in a tractable time, while also being relevant to the dissolution of cellulose in saturated steam. Comparison of the energies and structures obtained from the three force fields with those obtained from the first principles method showed that the COMPASS force field is preferred to the other two and that this force field gives similar structures obtained from the first principles method. This supports the validity of the COMPASS force field for studying cellulose dissolution in saturated steam, and preliminary simulations were performed using grand canonical Monte Carlo and molecular dynamics simulations of cellulose dissolution in saturated steam at 100 °C and 1 bar, 160 °C and 6.2 bar, and 250 °C and 39.7 bar. The results show that the cellulose crystal dissolves in saturated steam at the higher temperatures and pressures.

  • 60.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.
    Erdtman, Edvin
    University of Borås, School of Engineering.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Berlin, Mikael
    Andersson, Thorbjörn
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular modelling of oxygen and water permeation in polyethylene2013In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 54, no 12, p. 2988-Article in journal (Refereed)
    Abstract [en]

    Monte Carlo and molecular dynamics simulations were performed to calculate solubility, S, and diffusion, D, coefficients of oxygen and water in polyethylene, and to obtain a molecular-level understanding of the diffusion mechanism. The permeation coefficient, P, was calculated from the product of S and D. The AMBER force field, which yields the correct polymer densities under the conditions studied, was used for the simulations, and it was observed that the results were not sensitive to the inclusion of atomic charges in the force field. The simulated S for oxygen and water are higher and lower than experimental data, respectively. The calculated diffusion coefficients are in good agreement with experimental data. Possible reasons for the discrepancy in the simulated and experimental solubilities, which results in discrepancies in the permeation coefficients, are discussed. The diffusion of both penetrants occurs mainly by large amplitude, infrequent jumps of the molecules through the polymer matrix.

    Download full text (pdf)
    FULLTEXT01
  • 61.
    Haghighatpanah, Shayesteh
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular-level computational studies of single wall carbon nanotube: polyethylene composites2013In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 69, p. 443-454Article in journal (Refereed)
    Abstract [en]

    Minimum energy structures of short (3,3) single wall carbon nanotube (SWCNT)–polyethylene (PE) structures, as well as the binding energy between the SWCNT and PE, were obtained from three commonly used molecular mechanics force fields and first principles methods. The molecular force fields were the Dreiding, Universal and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields and the first principles methods included the B3LYP density functional and MP2 post-Hartree Fock methods with, typically, 6-311G, 6-311G(d,p) and 6-311G(2d,2p) basis sets. These calculations show that the results obtained from all force fields are in qualitative agreement with the first principles results, and that PE prefers to be aligned with a non-zero angle along the SWCNT axis, where the angle depends on the force field or first principles method used. This indicates that longer PE chains may wrap around SWCNTs. This was studied using the COMPASS force field with longer (5,5) SWCNTs interacting with a PE chain and, in agreement with the minimum energy calculations, the PE wrapped around the SWCNT thereby increasing the radius of gyration of the PE. This force field was also used to assess the effect of (5,5) SWCNTs on the mechanical properties of PE nanocomposites. The calculated interfacial shear stress and interfacial bonding energy of SWCNT–PE structures was 141.09 MPa and 0.14 N/m. The simulations show that using short SWCNTs as reinforcement does not increase the Young’s modulus for the systems studied here, whereas longer, aligned SWCNTs increased the Young’s modulus in the SWCNT axial direction.

  • 62.
    Mohsenzadeh, Abas
    et al.
    University of Borås, School of Engineering.
    Börjesson, Anders
    Wang, Jeng-Han
    Richards, Tobias
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    The Effect of Carbon Monoxide Co-Adsorption on Ni-Catalysed Water Dissociation2013In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 14, no 12, p. 23301-23314Article in journal (Refereed)
    Abstract [en]

    The effect of carbon monoxide (CO) co-adsorption on the dissociation of water on the Ni(111) surface has been studied using density functional theory. The structures of the adsorbed water molecule and of the transition state are changed by the presence of the CO molecule. The water O–H bond that is closest to the CO is lengthened compared to the structure in the absence of the CO, and the breaking O–H bond in the transition state structure has a larger imaginary frequency in the presence of CO. In addition, the distances between the Ni surface and H2O reactant and OH and H products decrease in the presence of the CO. The changes in structures and vibrational frequencies lead to a reaction energy that is 0.17 eV less exothermic in the presence of the CO, and an activation barrier that is 0.12 eV larger in the presence of the CO. At 463 K the water dissociation rate constant is an order of magnitude smaller in the presence of the CO. This reveals that far fewer water molecules will dissociate in the presence of CO under reaction conditions that are typical for the water-gas-shift reaction.

  • 63. Chelakara Satyanarayana, Kavitha
    et al.
    Bohlén, Martin
    University of Borås, School of Engineering.
    Lund, Anja
    Rychwalski, Rodney
    Bolton, Kim
    University of Borås, School of Engineering.
    Analysis of the torsion angle distribution of poly(vinylidene fluoride) in the melt2012In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 53, no 4, p. 1109-1114Article in journal (Refereed)
    Abstract [en]

    Analysis of the torsionangledistribution of poly(vinylidene fluoride) (PVDF) structures at temperatures above its melting point is addressed by combining first principles methods, atomistic simulations and laboratory experiments. Amorphous, α- and β-conformations of PVDF structures have been considered. The results from the atomistic simulations as well as the experiments show that there is a larger probability of the PVDF torsions to be near ±180° at temperatures above the melting point, which is associated more with the β-conformation than the α-conformation.

  • 64.
    Haghighatpanah, Shayesteh
    et al.
    University of Borås, School of Engineering.
    Börjesson, Anders
    Amara, Hakim
    Bichara, Christophe
    Bolton, Kim
    University of Borås, School of Engineering.
    Computational studies of graphene growth mechanisms2012In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 85, no 20Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) and semiempirical tight-binding (TB) methods have been used to study the mechanism of graphene growth in the presence and absence of a catalytic surface. Both DFT and TB geometry optimized structures relevant to graphene growth show that the minimum energy growth mechanism is via the sequential addition of carbon hexagons at the edge of the graphene sheet. Monte Carlo (MC) simulations based on the TB model show that defect-free graphene sheets can be grown provided one has the proper combination of temperature, chemical potential, and addition rate. In this work, growth of perfect graphene structures has been simulated at the atomic level. Comparison of the growth mechanism in the absence and presence of a nickel catalyst surface shows that the catalyst (i) allows for adsorption of carbon atoms at surface and subsurface sites, (ii) enables formation of long, stable strings of carbon atoms, and (iii) stabilizes small flakes of graphene that can act as precursors to subsequent growth.

  • 65. Samadikhah, Kaveh
    et al.
    Larsson, Ragnar
    Bazooyar, Faranak
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Continuum-molecular modelling of graphene2012In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 53, no 1, p. 37-43Article in journal (Refereed)
    Abstract [en]

    membranes using a hierarchical modeling strategy to bridge the scales required to describe and understand the material. Quantum Mechanical (QM) and optimized Molecular Mechanical (MM) models are used to describe details on the nanoscale, while a multiscale continuum mechanical method is used to model the graphene response at the device or micrometer scale. The complete method is obtained on the basis of the Cauchy Born Rule (CBR), where the continuum model is coupled to the atomic field via the CBR and a local discrete fluctuation field. The MM method, often used to model carbon structures, involves the Tersoff--Brenner (TB) potential; however, when applying this potential to graphene with standard parameters one obtains material stress behavior much weaker than experiments. On the other hand, the more fundamental Hartree Fock and Density Functional Theory (DFT) methods are computationally too expensive and very limited in terms of their applicability to model the geometric scale at the device level. In this contribution a simple calibration of some of the TB parameters is proposed in order to reproduce the results obtained from QM calculations. Subsequently, the fine-tuned TB--potential is used for the multiscale modeling of a nano indentation sample, where experimental data are available. Effects of the mechanical response due the calibration are demonstrated.

  • 66. Chelakara Satyanarayana, Kavitha
    et al.
    Bolton, Kim
    University of Borås, School of Engineering.
    Molecular dynamics simulations of α- to β-poly (vinylidene fluoride) phase change by stretching and poling2012In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 53, no 14, p. 2927-2934Article in journal (Refereed)
    Abstract [en]

    The mechanism of inducing a phase change from α-poly(vinylidene fluoride) (α-PVDF) to β-PVDF is addressed using molecular dynamics simulations based on a molecular mechanics force field. The effect of applying a strain to the α-PVDF crystal along the axis of the molecules is investigated, as well as poling the crystal before or after stretching. Rather large (at least 1010 V/m) electric fields that are perpendicular to the axis of the PVDF molecules are required to induce α- to β-PVDF phase change when no strain is applied to the α-PVDF crystal. However, at a strain of 1.0475 (i.e., when the crystal is stretched by 4.75%) α-PVDF changes to a β-PVDF like structure, where the β-PVDF molecules orientate anti-parallel relative to each other. Transformation of the anti-parallel β-PVDF to β-PVDF can be induced by poling (even at the lowest electric field of 105 V/m studied here) or by thermal annealing.

  • 67. Moodley, S.
    et al.
    Johansson, E.
    Bolton, K.
    University of Borås, School of Engineering.
    Ramjugernath, D.
    Phase-dependent energy cross-parameters in a monatomic binary fluid system2012In: Molecular Simulation, ISSN 0892-7022, E-ISSN 1029-0435, Vol. 38, no 10, p. 838-849Article in journal (Refereed)
  • 68.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Zhu, Wuming
    Börjesson, Anders
    Progress in understanding controlled single-wall carbon nanotube growth from computer simulations2012In: Journal of Computational and Theoretical Nanoscience, ISSN 1546-1955, E-ISSN 1546-1963, Vol. 9, no 6, p. 819-825Article in journal (Refereed)
    Abstract [en]

    Density functional theory based on the PW91 and PBE exchange-correlation functionals was used to study processes that are expected to play a key role in single-walled carbon nanotube (SWNT) growth and continued growth. It is shown that Ni clusters adapt their shape to the shape of the SWNT end to which they are attached. The results also show that the presence of SWNTs affects Ostwald ripening of the catalyst metal clusters and that, under certain conditions, the net diffusion may be from larger to smaller clusters. Also, Ostwald ripening may affect the chiral distribution of the SWNTs.

  • 69.
    Erdtman, Edvin
    et al.
    University of Borås, School of Engineering.
    Chelakara Satyanarayana, Kavitha
    Bolton, Kim
    University of Borås, School of Engineering.
    Simulation of α- and β-PVDF melting mechanisms2012In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 53, no 14, p. 2919-2926Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics (MD) simulations have been used to study the melting of α- and β-poly (vinylidene fluoride) (α- and β-PVDF). It is seen that melting at the ends of the polymer chains precedes melting of the bulk crystal structure. Melting of α-PVDF initially occurs via transitions between the two gauche dihedral angles (G ↔ G′) followed by transitions between trans and gauche dihedral angles (T ↔ G/G′). Melting of β-PVDF initially occurs via T → G/G′ transitions and via transitions of complete β- (TTTT) to α- (TGTG') quartets. The melting point of β-PVDF is higher than that of α-PVDF, and the simulated melting points of both phases depend on the length of the polymer chains used in the simulations. Since melting starts at the chain ends, it is important to include these in the simulations, and simulations of infinitely long chains yield melting points far larger than the experimental values (at least for periodic cells of the size used in this work), especially for β-PVDF. The simulated heats of fusion are in agreement with available experimental data.

    Download full text (pdf)
    fulltext
  • 70.
    Bazooyar, Faranak
    et al.
    University of Borås, School of Engineering.
    Momany, Frank A.
    Bolton, Kim
    University of Borås, School of Engineering.
    Validating Empirical Force Fields for Molecular-level Simulation of Cellulose Dissolution2012In: Computational and Theoretical Chemistry, ISSN 2210-271X, E-ISSN 2210-2728, Vol. 984, p. 119-127Article in journal (Refereed)
    Abstract [en]

    The calculations presented here, which include dynamics simulations using molecular mechanics forcefields and first principles studies, indicate that the COMPASS forcefield is preferred over the Dreiding and Universal forcefields for studying dissolution of large cellulose structures. The validity of these forcefields was assessed by comparing structures and energies of cellobiose, which is the shortest cellulose chain, obtained from the forcefields with those obtained from MP2 and DFT methods. In agreement with the first principles methods, COMPASS is the only forcefield of the three studied here that favors the anti form of cellobiose in the vacuum. This forcefield was also used to compare changes in energies when hydrating cellobiose with 1–4 water molecules. Although the COMPASS forcefield does not yield the change from anti to syn minimum energy structure when hydrating with more than two water molecules – as predicted by DFT – it does predict that the syn conformer is preferred when simulating cellobiose in bulk liquid water and at temperatures relevant to cellulosedissolution. This indicates that the COMPASS forcefield yields valid structures of cellulose under these conditions. Simulations based on the COMPASS forcefield show that, due to entropic effects, the syn form of cellobiose is energetically preferred at elevated temperature, both in vacuum and in bulk water. This is also in agreement with DFT calculations.

  • 71.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Börjesson, Anders
    University of Borås, School of Engineering.
    Computational studies of single-walled carbon nanotube growth2011In: SNIC Progress Report (2008-2009), p. 40-46Article in journal (Other academic)
    Abstract [en]

    Allocation of time on the Swedish national supercomputing facilities since 2000, as well as support from other sources, has allowed us to perform computational studies on a wide variety of systems. These include properties and growth of carbon nanotubes [1–36], icecatalysed reactions of importance to stratospheric ozone depletion[37], calculations of vapour-liquid, liquid-liquid and vapour-liquid-liquid phase equilibrium of single, binary and ternary component systems[38], and, more recently, carbonaceous polymer nanocomposites and cellulose decomposition. More details of these projects are available at the web page given above.

  • 72.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    First Principles Studies of the Effect of Ostwald Ripening on Carbon Nanotube Chirality Distributions2011In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 5, no 2, p. 771-779Article in journal (Refereed)
    Abstract [en]

    The effect of Ostwald ripening of metal particles attached to carbon nanotubes has been studied using density functional theory. It has been confirmed that Ostwald ripening may be responsible for the termination of growth of carbon nanotube forests. It was seen that the Ostwald ripening of metal particles attached to carbon nanotubes is governed by a critical factor that depends on both the cluster size and the carbon nanotube chirality. For example, clusters attached to armchair and zigzag nanotubes of similar diameters will have different critical factors although the exact behavior may depend on which molecules are present in the surrounding medium. The critical factor was also observed to have a critical point with the effect that clusters with a narrow size distribution close to the critical point may experience a narrowing rather than a widening of the size distribution, as is the case for free clusters.

  • 73.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering. University of Borås, Swedish School of Textiles.
    Modelling of Ostwald ripening of metal clusters attached to carbon nanotubes2011In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 50, p. 24454-24462Article in journal (Refereed)
    Abstract [en]

    We present a model of Ostwald ripening of nanosized clusters and apply it to study the time evolution of metal particles attached to carbon nanotubes. The Ostwald ripening of metal clusters attached to carbon nanotubes differs from that of free metal clusters. While free clusters experience a rapid broadening in the size dispersion, this may be delayed by the nanotubes, which may therefore limit the ripening. The diameter and chirality of the carbon nanotubes were also seen to affect the Ostwald ripening of the catalyst particles. For a collection of carbon nanotubes that contains different diameters and chiralities, the clusters attached to carbon nanotubes with large diameters and strong carbon–metal adhesion are the most likely to survive the Ostwald ripening.

  • 74. Mphahlele, R. C. J.
    et al.
    Bolton, Kim
    University of Borås, School of Engineering.
    Kasaini, H.
    Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces2010Conference paper (Refereed)
    Abstract [en]

    Empirical force fields and density functional theory (DFT) were used to study the binding energies and structures of methylamine on the surface of activated carbon (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the amine-carboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of (-9.227 kcal/mol) which agreed with PW91 at (-13.17 kcal/mol), compared to DFF (0 kcal/mol) and UFF (-0.72 kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

    Download full text (pdf)
    FULLTEXT01
  • 75. Zhu, Wuming
    et al.
    Börjesson, Anders
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    DFT and tight binding Monte Carlo calculations related to single-walled carbon nanotube nucleation and growth2010In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 48, no 2, p. 470-478Article in journal (Refereed)
    Abstract [en]

    Density-functional theory (DFT) calculations for idealized nucleation processes of (5,5) and (10,0) single-walled carbon nanotubes (SWCNTs) on a 55 atom nickel cluster (Ni-55) showed that it requires a larger chemical potential to grow a carbon island (which is the simplest structure that can lead to formation of the SWCNTs) on the cluster than to extend the island into a SWCNT or to have the carbon atoms dispersed on the cluster surface. Hence, in the thermodynamic limit the island will only form once the (surface of the) cluster is saturated with carbon, and the island will spontaneously form a SWCNT at the chemical potentials required to create the island. The DFT (zero Kelvin) and tight binding Monte Carlo (1000 K) also show that there is a minimum cluster size required to support SWCNT growth, and that this cluster size can be used to control the diameter, but probably not the chirality, of the SWCNT at temperatures relevant to carbon nanotube growth. It also imposes a minimum size of clusters that are used for SWCNT regrowth. (C) 2009 Elsevier Ltd. All rights reserved.

    Download full text (pdf)
    FULLTEXT01
  • 76.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    First Principles Studies of the Effect of Nickel Carbide Catalyst Composition on Carbon Nanotube Growth2010In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 42, p. 18045-18050Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations were used to investigate the stability of single-walled carbon nanotubes (CNTs) attached to nanoparticles. The total energies and the adhesion energies between the CNTs and the nanoparticles were calculated for systems where the nanoparticles were either pure Ni or Ni carbide. It was found that the adhesion between the CNT and a pure Ni cluster is stronger than between the same CNT and a Ni carbide cluster although the energy difference was small compared to the total adhesion energies. This adhesion strength implies that CNTs are likely to remain attached to both pure Ni and Ni carbide clusters and that either pure Ni or Ni carbide clusters may be docked onto the open CNT ends to achieve continued growth or electronic contacts between CNTs and electrode materials. The system with a CNT attached to a pure Ni cluster was found to be energetically favored compared to a system containing the same CNT attached to a Ni carbide. The difference in total energy implies that a CNT should act as a sink for C atoms dissolved in the Ni carbide cluster, which means that the dissolved C atoms will be drained from the cluster, yielding a pure metal in the zero Kelvin thermodynamic limit. It is argued that this draining procedure is likely to occur even if carbon is added to the cluster at a proper rate, for example, during CNT growth.

    Download full text (pdf)
    fulltext
    Download (pdf)
    supporting information
  • 77. Moodley, S.
    et al.
    Johansson, E.
    Bolton, Kim
    University of Borås, School of Engineering.
    Ramjugernath, D.
    Gibbs ensemble Monte Carlo simulations of binary vapour-liquid-liquid equilibrium: application to n-hexane/water and ethane/ethanol systems2010In: Molecular Simulation, ISSN 0892-7022, E-ISSN 1029-0435, Vol. 36, no 10, p. 758-762Article in journal (Refereed)
    Abstract [en]

    Gibbs ensemble Monte Carlo (GEMC) simulations in the isochoric-isothermal (NVT) ensemble were used to simulate vapour-liquid-liquid equilibrium (VLLE) for binary n-hexane-water and ethane-ethanol mixtures. The GEMC simulation of binary VLLE data proved to be extremely difficult and that is probably the reason why the open literature is so sparse with simulations for these types of systems. The results presented in this paper are to our knowledge the first successful binary three-phase GEMC simulations of non-idealised fluid systems. This paper also shows that the isobaric-isothermal (NPT) ensemble is unsuitable for the simulation of phase equilibria of binary three-phase systems.

  • 78. Moodley, Suren
    et al.
    Bolton, Kim
    University of Borås, School of Engineering.
    Ramjugernath, Deresh
    Monte Carlo simulations of vapor-liquid-liquid epuilibrium of ternary petrochemical mixtures2010In: Fluid Phase Equilibria, ISSN 0378-3812, E-ISSN 1879-0224, Vol. 299, no 1, p. 24-31Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to determine the capability and accuracy of Monte Carlo simulations to predict ternary vapor-liquid-liquid equilibrium (VLLE) for some industrial systems. Hence, Gibbs ensemble Monte Carlo simulations in the isobaric-isothermal (NpT) and isochoric-isothermal (NVT) ensembles were performed to determine vapor-liquid-liquid equilibrium state points for three ternary petrochemical mixtures: methane/n-heptane/water (1), n-butane/1-butene/water (2) and n-hexane/ethanol/water (3). Since mixture (1) exhibits a high degree of mutual insolubility amongst its components, and hence has a large three-phase composition region, simulations in the NpT ensemble were successful in yielding three distinct and stable phases at equilibrium. The results were in very good agreement with experimental data at 120kPa, but minor deviations were observed at 2000 kPa. Obtaining three phases for mixture (2) with the NpT ensemble is very difficult since it has an extremely narrow three-phase region at equilibrium, and hence the NVT ensemble was used to simulate this mixture. The simulated results were, once again, in excellent agreement with experimental data. We succeeded in obtaining three-phase equilibrium in the NpT ensemble only after knowing, a priori, the correct three-phase pressure (corresponding to the force fields that were implemented) from NVT simulations. The success of the NVT simulation, compared to NpT, is due to the fact that the total volume can spontaneously partition itself favorably amongst the three boxes and only one intensive variable (T) is fixed, whereas the pressure and the temperature are fixed in an NpT simulation. NpT simulations yielded three distinct phases for mixture (3), but quantitative agreement with experimental data was obtained at very low ethanol concentrations only.

    Download full text (pdf)
    FULLTEXT01
  • 79. Cutrarolo, Stefano
    et al.
    Awastahi, Neha
    Setyawan, Wahyu
    Li, Na
    Jiang, Aiqin
    Mora, Elena
    Bolton, Kim
    University of Borås, School of Engineering.
    Harutyunyan, Avetik R.
    Thermodynamics of carbon in iron nanoparticles at low temperature: reduced solubility and size-induced nucleation of cementite2010In: Physics Procedia, E-ISSN 1875-3892, Vol. 6, p. 16-26Article in journal (Refereed)
    Abstract [en]

    In this manuscript we present the thermodynamics of iron-carbon nano particles at low temperature. By combining classical molecular dynamics simulations, ab initio calculations, finite temperature thermodynamics modeling, and the “size/pressure approximation”, we address carbon-induced fluidization, size-induced eutectic point shift, and reduced solubility at the nanoscale. The results are used to describe, as functions of particle size, three scenarios in the catalytic chemical vapor deposition growth of single single-walled carbon nanotubes, corresponding to steady state-, limitedand no-growth.

  • 80.
    Ahlström, Peter
    et al.
    University of Borås, School of Engineering.
    Gebäck, Tobias
    University of Borås, School of Engineering.
    Johansson, Erik
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Water absorption in polymers2010Conference paper (Other academic)
    Abstract [en]

    In this work two different examples of water absorbtion in polymers are studied by Monte Carlo simulations. Both of them are of large technical and commercial impotance. The first example is the water absorption in polyethylene cables where the water absorption plays a crucial role in the degradation of the cable insulation and thus should be as low as possible. The second example is bio-based superabsorbents made from denatured protein where water absorption capability is the prime desired property. Methods Gibbs Ensemble Monte Carlo simulations [1] were used to study the hydration of polymers. All simulations are performed with two boxes, one of which is filled with water at the start of the simulation, whereas the other contains polymer molecules and possible ions. The polymer molecules are not allowed to swap boxes whereas the water molecules are allowed to do so thus constituting an osmotic Gibbs ensemble [2]. For the polyethylene a connectivity-altering algorithm was used whereas the protein molecules were simulated using a side-chain regrowth model in addition to traditional Monte Carlo moves. For the polyethylene, the TraPPE [3] force field was used and the protein molecules, the Amber force field [4] was used. Water was modelled using simple point charge models [5]. Electrostatic interactions are treated using Ewald summation methods. The protein molecules were of different amino acid compositions and in different conformations, e.g., β-turns and random coils obtained using the amorphous cell method[6]. Studies were made with different degrees of charging on, e.g., lysine side chains mimicking different ionization states. Results The studies of polyethylene revealed the importance of ions left from the polymerisation catalyst for the absorbtion of water and the concomitant degradation of polyethylene cable insulation. Also the absorption properties of the protein molecules is strongly related to the presence of charged groups and fully charged protein molecules absorb large amounts of water. However, neither native nor denatured protein molecules show superabsorbing properties (i.e. absorbing hundreds of times their own mass) as they show in experimental studies and the reasons for this discrepancy will be discussed. References 1. A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). 2. E. Johansson, K. Bolton, D.N. Theodorou, P. Ahlström, J. Chem. Phys., 126, 224902 (2007). 3. M.G. Martin, and J.I. Siepmann, J. Phys. Chem. B, 103, 4508-4517 (1999). 4. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman (1995). J. Am. Chem. Soc. 117, 5179–5197. 5. H. J. C. Berendsen, J. P. M. Postma and W. F. van Gunsteren, in Intermolecular Forces, B. Pullman, ed. (Reidel, Dordrecht, 1981) p. 331; H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). 6. D.N. Theodorou, U.W. Suter, Macromolecules, 18, 1467 (1985).

    Download full text (pdf)
    FULLTEXT01
  • 81.
    Björk, Hans
    et al.
    University of Borås, School of Engineering.
    Lindecrantz, Kaj
    University of Borås, School of Engineering.
    Ericsson, Dag
    University of Borås, School of Engineering.
    Sarv, Hans
    University of Borås, School of Engineering.
    Bolton, Kim
    University of Borås, School of Engineering.
    Börjesson, Anders
    University of Borås, School of Engineering.
    Bazooyar, Faranak
    University of Borås, School of Engineering.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad
    University of Borås, School of Engineering.
    Andersson, Bengt-Åke
    University of Borås, School of Engineering.
    Johansson, Andreas
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    20 år med Institutionen Ingenjörshögskolan: historik, nuläge och framtid2009Report (Other academic)
    Download full text (pdf)
    FULLTEXT01
    Download (pdf)
    COVER01
  • 82.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Börjesson, Anders
    University of Borås, School of Engineering.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Bazooyar, Faranak
    University of Borås, School of Engineering.
    Beräkningsteknik2009In: Vetenskap för profession, ISSN 1654-6520, no 10, p. 63-68Article in journal (Other academic)
  • 83.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Ding, F.
    Börjesson, Arne
    Zhu, W.M.
    Duan, H.M.
    Harutyunyan, A.R.
    Curtarlo, S.
    Computational Studies of Catalytic Particles for Carbon Nanotube Growth2009In: Journal of Computational and Theoretical Nanoscience, ISSN 1546-1955, E-ISSN 1546-1963, Vol. 6, no 1, p. 1-15Article in journal (Refereed)
    Abstract [en]

    We review our computational studies of the melting temperatures and mechanisms of iron and iron-carbide clusters. Both isolated and supported clusters have been considered, and substrates with different shapes or pores have been simulated. It has been seen, for example, that the surface curvature—or local surface curvature—of the particle plays a dominant role in the melting mechanism and temperature. It has also been observed that the melting mechanism for small clusters is different to that of larger clusters.

  • 84.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.
    Zhu, Wuming
    Amara, Hakim
    Bichara, Christophe
    Bolton, Kim
    University of Borås, School of Engineering.
    Computational studies of metal-carbon nanotube interfaces for regrowth and electronic transport2009In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 3, p. 1117-1120Article in journal (Refereed)
    Abstract [en]

    First principles and tight binding Monte Carlo simulations show that junctions between single-walled carbon nanotubes (SWNTs) and nickel clusters are on the cluster surface, and not at subsurface sites, irrespective of the nanotube chirality, temperature, and whether the docking is gentle or forced. Gentle docking helps to preserve the pristine structure of the SWNT at the metal interface, whereas forced docking may partially dissolve the SWNT in the cluster. This is important for SWNT-based electronics and SWNT-seeded regrowth.

  • 85.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Börjesson, Anders
    University of Borås, School of Engineering.
    Zhu, Wuming
    Amara, Hakim
    Bichara, Christophe
    Density functional theory and tight binding-based dynamical studies of carbon metal systems of relevance to carbon nanotube growth2009In: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 2, no 10, p. 774-782Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) and tight binding (TB) models have been used to study systems containing single-walled carbon nanotubes (SWNTs) and metal clusters that are of relevance to SWNT growth and regrowth. In particular, TB-based Monte Carlo (TBMC) simulations at 1000 or 1500 K show that Ni atoms that are initially on the surface of the SWNT or that are clustered near the SWNT end diffuse to the nanotube end so that virtually none of the Ni atoms are located inside the nanotube. This occurs, in part, due to the lowering of the Ni atom energies when they retract from the SWNT to the interior of the cluster. Aggregation of the atoms at the SWNT end does not change the chirality within the simulation time, which supports the application of SWNT regrowth (seeded growth) as a potential route for chirality-controlled SWNT production. DFT-based geometry optimisation and direct dynamics at 2000 K show that Cr and Mo atoms in Cr5Co50 and Mo5Co50 clusters prefer to be distributed in the interior of the clusters. Extension of these calculations should deepen our understanding of the role of the various alloy components in SWNT growth.

  • 86. Zhu, Wuming
    et al.
    Duan, Haiming
    Bolton, Kim
    University of Borås, School of Engineering.
    Diameter and Chirality Changes of Single-Walled Carbon nanotubes During Growth: An ab-inition Study2009In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 9, no 2, p. 1222-1225Article in journal (Refereed)
    Abstract [en]

    We use density functional theory to investigate possible changes of the diameter and chirality of single-walled carbon nanotubes (SWNTs) during catalyzed growth on a nickel cluster. The interplay of nanotube curvature, defects, and carbon-metal interaction dictates if a change is energetically favorable. We found that, given a sufficiently large Ni cluster, both zigzag and armchair nanotubes tend to increase their diameters during growth. This increase leads to a larger increase in energetic stability for smaller diameter nanotubes. Chirality changes are also demonstrated. Our findings impact on the possibility of using the recently proposed nanotube-seeded continued growth of SWNTs to control their chirality.

  • 87.
    Bolton, Kim
    et al.
    University of Borås, School of Engineering.
    Johansson, Erik
    University of Borås, School of Engineering.
    Jönsson, Lennart
    University of Borås, School of Engineering.
    Ahlström, Peter
    University of Borås, School of Engineering.
    Simulation of water clusters in vapour, alkanes and polyethylenes2009In: Molecular Simulation, ISSN 0892-7022, E-ISSN 1029-0435, Vol. 35, no 10/11, p. 888-896Article in journal (Refereed)
    Abstract [en]

    The Gibbs Ensemble Monte Carlo (GEMC) technique has been used to study the clustering of water in vapour, alkanes and polyethylene, where the water clusters are in equilibrium with liquid phase water. The effect of an external electric field and ionic impurities on the clustering of water in the hydrocarbons (alkanes and polyethylene) has also been studied. The simulations of water clustering in polyethylene were made more efficient by using a connectivity altering osmotic Gibbs ensemble method. It was found that trends in the size distribution of water clusters in the hydrocarbons are similar to those found in the pure vapour, but that fewer and smaller clusters are formed as the length of the hydrocarbon chain increased. Also, large external electric fields decrease the solubility of water in hydrocarbons, whereas the presence of ionic species dramatically increases the solubility.

  • 88. Zhu, Wuming
    et al.
    Rosén, Arne
    Bolton, Kim
    University of Borås, School of Engineering.
    Changes in single-walled carbon nanotube chirality during growth and regrowth2008In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 128, no 12Article in journal (Refereed)
  • 89. Duan, Haiming
    et al.
    Rosén, Arne
    Harutyunyan, Avetik
    Curtarolo, Stefano
    Bolton, Kim
    University of Borås, School of Engineering.
    Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth2008In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 8, no 11, p. 6170-6177Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred.

  • 90.
    Börjesson, Anders
    et al.
    University of Borås, School of Engineering.