Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Benedikt Maria Köhnlein, M.
    et al.
    Abitbol, T.
    RISE - Research Institutes of Sweden, Bioeconomy, Materials and Surfaces, 114 28 Stockholm, Sweden.
    Osório Oliveira, A.
    Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden.
    Magnusson, M. S.
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging, 114 28 Stockholm, Sweden.
    Adolfsson, K. H.
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Svensson, Sofie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Hakkarainen, M.
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bioconversion of food waste to biocompatible wet-laid fungal films2022In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 216, article id 110534Article in journal (Refereed)
    Abstract [en]

    The fungus Rhizopus delemar was grown on bread waste in a submerged cultivation process and wet-laid into films. Alkali or enzyme treatments were used to isolate the fungal cell wall. A heat treatment was also applied to deactivate biological activity of the fungus. Homogenization of fungal biomass was done by an iterative ultrafine grinding process. Finally, the biomass was cast into films by a wet-laid process. Ultrafine grinding resulted in densification of the films. Fungal films showed tensile strengths of up to 18.1 MPa, a Young's modulus of 2.3 GPa and a strain at break of 1.4%. Highest tensile strength was achieved using alkali treatment, with SEM analysis showing a dense and highly organized structure. In contrast, less organized structures were obtained using enzymatic or heat treatments. A cell viability assay and fluorescent staining confirmed the biocompatibility of the films. A promising route for food waste valorization to sustainable fungal wet-laid films was established. © 2022 The Authors

    Download full text (pdf)
    fulltext
  • 2.
    Svensson, Sofie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Development of Filaments Using Cell Wall Material of Filamentous Fungi Grown on Bread Waste for Application in Medical Textiles2024Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is a need for new sustainable textiles to reduce the problems related to the productionof current textiles, including the use of nonrenewable resources, shortages of cotton, and theuse of harmful chemicals. Bio-based materials developed from natural biopolymers areattracting increasing interest as sustainable alternatives to fossil-based materials. Thecultivation of filamentous fungi results in fungal biomass that is rich in biopolymers. In fungalbiorefineries, food waste can be valorized via fungal cultivation, resulting in a broad range ofvalue-added products.

    In this study, filaments were designed from the cell wall material of filamentous fungi grownon bread waste and evaluated for application in medical textiles. The developed route forfilament production uses benign processes and reuses food waste. The fungal cell wall, isolatedfrom fungal biomass (mycelia), consists of a matrix of biopolymers, including chitin, chitosan,and glucan. The aim was to directly utilize the cell wall material for developing filamentswithout needing extensive purification of these biopolymers.

    Fungal biomass was obtained by cultivating an edible filamentous fungus (Rhizopus delemar)with a cell wall rich in chitosan and chitin. Submerged cultivation using bread waste as asubstrate was demonstrated on multiple scales, from 0.2 L shake flasks to a 1.3 m3 bioreactor.First, a protein hydrolysate was recovered from the fungal biomass via mild enzymatictreatment. The protein hydrolysate exhibited potential as an emulsifier and foaming agent. Thenever-dried cell wall material was isolated using alkali treatment for filament production.Hydrogels formed from the cell wall material after the addition of lactic acid. Hydrogelformation was attributed to the protonation of the amino groups of chitosan present in the cellwall. The hydrogels were wet spun into monofilaments using ethanol as the coagulation agent.The fungal monofilaments are suggested as suitable candidates for applications in medicaltextiles owing to their biocompatibility with human fibroblast cells and their antibacterial andwound-healing properties. This method was also applied to another strain of ediblefilamentous fungi (Aspergillus oryzae), wherein the cell wall mainly comprises chitin andglucan. The cell wall material obtained from A. oryzae was subjected to deacetylation andfreeze–thaw pre-treatments to achieve gelation, and the formed hydrogels were successfullywet spun into monofilaments.

    The work presented in this thesis introduces the potential of the valorization of bread wasteinto value-added products based on a biorefinery concept utilizing different edible fungalstrains. This process focuses on scalability and environmental benignity. This studycontributes to the development of novel biomaterials and fungal proteins obtained from fungalcell walls for application in medical textiles and food products, respectively.

    Download full text (pdf)
    fulltext
    Download (pdf)
    spikblad
  • 3.
    Svensson, Sofie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bucuricova, Ludmila
    Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Souza Filho, Pedro F.
    Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass2021In: Fermentation, ISSN 2311-5637, Vol. 7, no 2Article in journal (Refereed)
    Abstract [en]

    Filamentous fungi can be used for the valorization of food waste as a value-added product. The goal of this study was the valorization of bread waste through fungal cultivation and the production of value-added products. The fungal cultivation was verified for upscaling from shake flasks to a bench-scale bioreactor (4.5 L) and a pilot-scale bioreactor (26 L). The fungus showed the ability to grow without any additional enzymes or nutrients, and it was able to consume a bread concentration of 4.5% (w/v) over 48 h. The biomass concentration in the shake flasks was 4.1 g/L at a 2.5% bread concentration, which increased to 22.5 g/L at a 15% bread concentration. The biomass concentrations obtained after 48 h of cultivation using a 4.5% bread concentration were 7.2–8.3 and 8.0 g/L in 4.5 and 26 L bioreactors, respectively. Increasing the aeration rate in the 4.5 L bioreactor decreased the amount of ethanol produced and slightly reduced the protein content of the fungal biomass. The initial protein value in the bread was around 13%, while the protein content in the harvested fungal biomass ranged from 27% to 36%. The nutritional value of the biomass produced was evaluated by analyzing the amino acids and fatty acids. This study presents the valorization of bread waste through the production of a protein- and fatty-acid-rich fungal biomass that is simultaneously a source of microfibers.

    Download full text (pdf)
    fulltext
  • 4.
    Svensson, Sofie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Hakkarainen, Minna
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Adolfsson, Karin H.
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns2021In: Sustainable Materials and Technologies, ISSN 2214-9937, Vol. 28, article id e00256Article in journal (Refereed)
    Abstract [en]

    The cell wall of a zygomycetes fungus was successfully wet spun into monofilament yarns and demonstrated as a novel resource for production of sustainable textiles. Furthermore, the fungus could be cultivated on bread waste, an abundant food waste with large negative environmental impact if not further utilized. Rhizopus delemar was first cultivated in bread waste in a bubble column bioreactor. The fungal cell wall collected through alkali treatment of fungal biomass contained 36 and 23% glucosamine and N-acetyl glucosamine representing chitosan and chitin in the cell wall, respectively. The amino groups of chitosan were protonated by utilizing acetic or lactic acid. This resulted in the formation of a uniform hydrogel of fungal microfibers. The obtained hydrogel was wet spun into an ethanol coagulation bath to form an aggregated monofilament, which was finally dried. SEM images confirmed the alignment of fungal microfibers along the monofilament axis. The wet spun monofilaments had tensile strengths up to 69.5 MPa and Young's modulus of 4.97 GPa. This work demonstrates an environmentally benign procedure to fabricate renewable fibers from fungal cell wall cultivated on abundant food waste, which opens a window to creation of sustainable fungal textiles.

    Download full text (pdf)
    fulltext
  • 5.
    Svensson, Sofie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Oliveira, A. O.
    Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
    Adolfsson, K. H.
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Heinmaa, I.
    National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia.
    Root, A.
    MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland.
    Kondori, N.
    Department of Infectious Diseases, Institution of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Hakkarainen, M.
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments2022In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 209, p. 618-630Article in journal (Refereed)
    Abstract [en]

    Here, cell wall of a zygomycete fungus, Rhizopus delemar, grown on bread waste was wet spun into monofilaments. Using the whole cell wall material omits the common chitosan isolation and purification steps and leads to higher material utilization. The fungal cell wall contained 36.9% and 19.7% chitosan and chitin, respectively. Solid state NMR of the fungal cell wall material confirmed the presence of chitosan, chitin, and other carbohydrates. Hydrogels were prepared by ultrafine grinding of the cell wall, followed by addition of lactic acid to protonate the amino groups of chitosan, and subsequently wet spun into monofilaments. The monofilament inhibited the growth of Bacillus megaterium (Gram+ bacterium) and Escherichia coli (Gram- bacterium) significantly (92.2% and 99.7% respectively). Cytotoxicity was evaluated using an in vitro assay with human dermal fibroblasts, indicating no toxic inducement from exposure of the monofilaments. The antimicrobial and biocompatible fungal monofilaments, open new avenues for sustainable biomedical textiles from abundant food waste. © 2022 The Authors

    Download full text (pdf)
    fulltext
  • 6.
    Svensson, Sofie
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bohlén, Martin
    University of Borås, Faculty of Textiles, Engineering and Business.
    Reprocessing of High-Density Polyethylene Reinforced with Carbon Nanotubes2020In: Journal of Polymers and the Environment, ISSN 1566-2543, E-ISSN 1572-8919, Vol. 28, no 7, p. 1967-1973Article in journal (Refereed)
    Abstract [en]

    High-density polyethylene (HDPE) was compounded with 3 wt% carbon nanotubes (CNTs). In order to simulate mechanical recycling, both the nanocomposite and neat HDPE were repeatedly extruded and subsequently analysed by tensile tests, Charpy impact strength, differential scanning calorimetry (DSC), oxidation induction time (OIT), Gel Performance Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR) and TEM After 10 cycles of extrusion, thermal, mechanical, and rheological tests did not reveal any significant degradation. In order to better study the effect of the CNTs, a large number of cycles were simulated by processing the materials for up to 200 min. After 200 min of processing, the neat HDPE was significantly degraded whereas the nanocomposite was almost unaffected.

  • 7.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Kumar Ramamoorthy, Sunil
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bohlén, M.
    Rise Research Institutes of Sweden, Molndal, Sweden.
    Skrifvars, Ville-Viktor
    University of Borås, Faculty of Textiles, Engineering and Business.
    Svensson, Sofie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Thermo-oxidative aging of high-density polyethylene reinforced with multiwalled carbon nanotubes2021In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 138, no 26, article id 50609Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the influence of aging on the properties of high-density polyethylene (HDPE) reinforced with multi-wall carbon nanotubes (MWCNTs). Nanocomposites were prepared with nanotubes at 0, 1, 3, and 5 wt%. The long-term durability of the prepared materials was evaluated by thermo-oxidative aging test. Test bodies were aged at 110°C for up to 10 weeks. The nanocomposites were characterized by differential scanning calometry, thermogravimetric analysis (TGA), 13C-NMR, elongation at break, and transmission electron microscopy. The aging mainly occurred on the surface of the samples and the neat HDPE showed a strong yellowing after the aging. A strong reduction in elongation at break was seen. For neat HDPE, the elongation at break was reduced from roughly 1400–25%. When HDPE was reinforced with the nanotubes, the reduction was less dramatic

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf