Change search
Refine search result
1234567 1 - 50 of 594
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abbaszadeh, A
    et al.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Effect of extraction conditions on yield and purity of citrus pectin by sulfuric and hydrochloric acids2009Conference paper (Refereed)
  • 2.
    Abedinifar, S.
    et al.
    Department of Chemical Engineering, Isfahan University of Technology.
    Karimi, K
    Department of Chemical Engineering, Isfahan University of Technology.
    Khanahmadi, M.
    Isfahan Agriculture and Natural Resources Research Centre.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation2009In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 33, no 5, p. 828-833Article in journal (Refereed)
    Abstract [en]

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and β-glucosidase enzymes were first investigated and their best performance obtained at 45 °C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g-1 sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g-1) and untreated straw (0.46 g g-1). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L-1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g-1 ethanol, 0.11-0.17 g g-1 biomass, and 0.04-0.06 g g-1 glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g-1 ethanol, 0.04-0.10 g g-1 biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g-1. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g-1, respectively. 

  • 3. Abedinifar, Sorahi
    et al.
    Karimi, Keikhosro
    University of Borås, School of Engineering.
    Khanahmadi, Morteza
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Ethanol production by Mucor indicus and Rhizapus oryzae from rice straw by separate hydrolysis and fermentation2009In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 33, no 5, p. 828-833Article in journal (Refereed)
    Abstract [en]

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and beta-glucosidase enzymes were first investigated and their best performance obtained at 45 degrees C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g (1) sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g (1)) and untreated straw (0.46 g g(-1)). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L-1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g(-1) ethanol, 0.11-0.17 g g(-1) biomass, and 0.04-0.06 g g(-1) glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g(-1) ethanol, 0.04-0.10 g g(-1) biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g(-1). This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g(-1), respectively. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

  • 4. Abtahi, Zhohreh
    et al.
    Millati, Ria
    Niklasson, Claes
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Ethanol production by Mucor indicus at high glucose and ethanol concentrations2010In: Minerva biotecnologica (Testo stampato), ISSN 1120-4826, E-ISSN 1827-160X, Vol. 22, no 3-4, p. 83-89Article in journal (Refereed)
    Abstract [en]

    Mucor indicus was cultivated under aerobic and anaerobic conditions to study its tolerance against high concentration of glucose up to 350 g/L and ethanol up to 120 g/L present in the medium. The fungus could grow well even in 350 g/L glucose and produce ethanol, but it was able to assimilate the entire glucose when its concentration was less than 200 g/L. On the other hand, M. indicus produced ethanol as the main product with yield and concentration up to 0.45 g/g and 73 g/L, respectively, while glycerol, its only major byproduct, was produced up to 24 g/L. However, the fungus was not so tolerant against exogenously added ethanol, and it could not grow with more than 40 g/L added ethanol to the culture. Under aerobic conditions, M. indicus displayed different morphology, switching from long filamentous to yeast-like growth forms by increasing initial glucose concentration. This implies that yeast-like growth can be induced by growing M. indicus at high glucose concentration. Under anaerobic conditions, only one yeast-like form was observed.

  • 5.
    Aghajani, M
    et al.
    Department of Chemical Engineering, Babol Noushirvani University of Technology.
    Rahimpour, A
    Department of Chemical Engineering, Babol Noushirvani University of Technology.
    Amani, H
    Department of Chemical Engineering, Babol Noushirvani University of Technology.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rhamnolipid as new bio-agent for cleaning of ultrafiltration membrane fouled by whey2018In: Engineering in Life Sciences, ISSN 1618-0240, E-ISSN 1618-2863, Vol. 18, no 5, p. 272-280Article in journal (Refereed)
    Abstract [en]

    In this work, rhamnolipid biosurfactant as an eco-friendly and biodegradable cleaning agent was produced by Pseudomonas aeruginosa bacteria and was used to evaluate the chemical cleaning efficiency of whey fouled ultrafiltration membranes. Thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful synthesis of rhamnolipid. The produced rhamnolipid was compared to chemical cleaners including sodium hydroxide (NaOH), sodium dodecyl sulfate (SDS) and Tween 20. Ultrafiltration membranes used for fouling and cleaning analysis were prepared using phase inversion via immersion precipitation technique. For studying the fouling mechanisms, Hermia's model adapted to cross-flow was used. From the fouling mechanism experiments, it was found that the complete blocking and cake formation were the dominant fouling mechanisms. The highest values of cleaning efficiency were achieved using rhamnolipid and NaOH as cleaning agents with the flux recovery of 100%, but with considering the low concentration of the rhamnolipid used in the cleaning solution compared to NaOH (0.3 versus 4 g/L for NaOH), its application is preferred. 

  • 6.
    Agnihotri, Swarnima
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Yin, D M
    Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.
    Mahboubi, Amir
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sapmaz, Tugba
    University of Borås, Faculty of Textiles, Engineering and Business.
    Varjani, S
    Gujarat Pollution Control Board, Gandhinagar, India.
    Qiao, W
    Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.
    Koseoglu-Imer, D Y
    Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    A Glimpse of the World of Volatile Fatty Acids Production and Application: A review2022In: Bioengineered, ISSN 2165-5979, E-ISSN 2165-5987, Vol. 13, no 1, p. 1249-1275Article, review/survey (Refereed)
    Abstract [en]

    Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.

    Download full text (pdf)
    fulltext
  • 7. Akbari, H.
    et al.
    Karimi, K
    University of Borås, School of Engineering.
    Lundin, M
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Optimization of baker's yeast drying in industrial continuous fluidized-bed dryer2012In: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 90, no 1, p. 52-57Article in journal (Refereed)
    Abstract [en]

    Instant active dry baker's yeast is a well-known product widely used for leavening of bread, produced by fermentation, and usually dried by hot air to 94–96% dry matter content. Multi-stage fluidized bed drying process is a commercial effective method for yeast drying. In this work, optimum operating parameters of an industrial continuous fluidized bed dryer for the production of instant active dry yeast were investigated. The dryer contained four zones separated with moving weirs. The operating conditions such as temperature, loading rate of compressed yeast granules, and hot air humidity had direct effects on both yeast activity and viability. The most important factors that affected the quality of the product were loading rate and the operational temperature in each zone on the bed. Optimization was performed for three loading rates of the feed to the dryer, using response surface methodology for the experimental design. The most significant factor was shown to be the loading rate with mean fermentation activity values of 620, 652, and 646 cm3 CO2/h for 300, 350, and 400 kg/h loading rates, respectively. The data analysis resulted in an optimal operating point at a loading rate of 350 kg/h and temperatures of zones 1, 2, 3, and 4 controlled at 33, 31, 31, and 29 °C, respectively. The best activity value was predicted as 668 ± 18 cm3 CO2/h, and confirmation experiments resulted in 660 ± 10 cm3 CO2/h. At the same operating point, the average viability of the cells was predicted as 74.8 ± 3.7% and confirmed as 76.4 ± 0.6%. Compared with the normal operating conditions at the plant, the optimization resulted in more than 12% and 27% improvement in the yeast activity and viability, respectively.

  • 8. Akbari, H.
    et al.
    Karimi, K.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Optimization of baker´s yeast drying in industrial continuous fluidized-bed dryer2008Conference paper (Refereed)
  • 9.
    Akinbomi, J G
    et al.
    Department of Chemical Engineering, Faculty of Engineering, Lagos State University, Lagos, 100268, Nigeria.
    Patinvoh, R J
    Department of Chemical Engineering, Faculty of Engineering, Lagos State University, Lagos, 100268, Nigeria.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Current challenges of high-solid anaerobic digestion and possible measures for its effective applications: a review2022In: Biotechnology for Biofuels and Bioproducts, E-ISSN 2731-3654, Vol. 15, no 1Article, review/survey (Refereed)
    Abstract [en]

    The attention that high solids anaerobic digestion process (HS-AD) has received over the years, as a waste management and energy recovery process when compared to low solids anaerobic digestion process, can be attributed to its associated benefits including water conservation and smaller digester foot print. However, high solid content of the feedstock involved in the digestion process poses a barrier to the process stability and performance if it is not well managed. In this review, various limitations to effective performance of the HS-AD process, as well as, the possible measures highlighted in various research studies were garnered to serve as a guide for effective industrial application of this technology. A proposed design concept for overcoming substrate and product inhibition thereby improving methane yield and process stability was recommended for optimum performance of the HS-AD process.

    Download full text (pdf)
    fulltext
  • 10.
    Akinbomi, Julius
    et al.
    University of Borås, School of Engineering.
    Brandberg, Tomas
    University of Borås, School of Engineering.
    Sanni, Adebayo
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad
    University of Borås, School of Engineering.
    Development and dissemination strategies for accelerating biogas production in Nigeria2014In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 9, no 3, p. 5707-5737Article in journal (Refereed)
    Abstract [en]

    Following the worsening energy crisis of unreliable electricity and unaffordable petroleum products coupled with the increase number of poverty-stricken people in Nigeria, the populace is desperately in need of cheap alternative energy supplies that will replace or complement the existing energy sources. Previous efforts by the government in tackling the challenge by citizenship sensitization of the need for introduction of biofuel into the country’s energy mix have not yielded the expected results because of a lack of sustained government effort. In light of the shortcomings, this study assesses the current potential of available biomass feedstock for biogas production in Nigeria, and further proposes appropriate biogas plants, depending on feedstock type and quantity, for the six geopolitical zones in Nigeria. Besides, the study proposes government-driven biogas development systems that could be effectively used to harness, using biogas technology, the estimated 270 TWh of potential electrical energy from 181 million tonnes of available biomass, in the advancement of electricity generation and consequent improvement of welfare in Nigeria.

    Download full text (pdf)
    fulltext
  • 11.
    Akinbomi, Julius
    et al.
    University of Borås, School of Engineering.
    Brandberg, Tomas
    University of Borås, School of Engineering.
    Sanni, Sikiru A.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Development and Dissemination Strategies for Accelerating Biogas Production in Nigeria2014In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 9, no 3Article in journal (Refereed)
    Abstract [en]

    Following the worsening energy crisis of unreliable electricity and unaffordable petroleum products coupled with the increase number of poverty-stricken people in Nigeria, the populace is desperately in need of cheap alternative energy supplies that will replace or complement the existing energy sources. Previous efforts by the government in tackling the challenge by citizenship sensitization of the need for introduction of biofuel into the country’s energy mix have not yielded the expected results because of a lack of sustained government effort. In light of the shortcomings, this study assesses the current potential of available biomass feedstock for biogas production in Nigeria, and further proposes appropriate biogas plants, depending on feedstock type and quantity, for the six geopolitical zones in Nigeria. Besides, the study proposes government-driven biogas development systems that could be effectively used to harness, using biogas technology, the estimated 270 TWh of potential electrical energy from 181 million tonnes of available biomass, in the advancement of electricity generation and consequent improvement of welfare in Nigeria.

    Download full text (pdf)
    FULLTEXT01
  • 12.
    Akinbomi, Julius
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes2015In: Energies, E-ISSN 1996-1073, Vol. 8, no 5, p. 4253-4272Article in journal (Refereed)
    Abstract [en]

    The economic viability of employing dark fermentative hydrogen from wholefruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to theinhibitory effect of some metabolites in the fermentation medium. In exploring means ofincreasing hydrogen production from fruit wastes, including orange, apple, banana, grapeand melon, the present study assessed the hydrogen production potential of singly-fermentedfruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected tovarying hydraulic retention times (HRTs) in a continuous fermentation process at 55 °C for47 days. The weight distributions of the first, second and third fruit mixtures were 70%,50% and 20% orange share, respectively, while the residual weight was shared equally bythe other fruits. The results indicated that there was an improvement in cumulativehydrogen yield from all of the feedstock when the HRT was five days. Based on the resultsobtained, apple as a single fruit and a fruit mixture with 20% orange share have the mostimproved cumulative hydrogen yields of 504 (29.5% of theoretical yield) and 513 mL/gvolatile solid (VS) (30% of theoretical yield ), respectively, when compared to other fruits.

    Download full text (pdf)
    fulltext
  • 13.
    Akinbomi, Julius
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wikandari, Rachman
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells.2015In: Membranes, ISSN 2077-0375, E-ISSN 2077-0375, Vol. 5, no 4Article in journal (Refereed)
    Abstract [en]

    This study focused on the possibility of improving fermentative hydrogen and methane production from an inhibitory fruit-flavored medium using polyvinylidene fluoride (PVDF) membrane-encapsulated cells. Hexanal, myrcene, and octanol, which are naturally produced in fruits such as apple, grape, mango, orange, strawberry, and plum, were investigated. Batch and semi-continuous fermentation processes at 55 °C were carried out. Presence of 5 g/L of myrcene, octanol, and hexanal resulted in no methane formation by fermenting bacteria, while encapsulated cells in the membranes resulted in successful fermentation with 182, 111, and 150 mL/g COD of methane, respectively. The flavor inhibitions were not serious on hydrogen-producing bacteria. With free cells in the presence of 5 g/L (final concentration) of hexanal-, myrcene-, and octanol-flavored media, average daily yields of 68, 133, and 88 mL/g COD of hydrogen, respectively, were obtained. However, cell encapsulation further improved these hydrogen yields to 189, 179, and 198 mL/g COD. The results from this study indicate that the yields of fermentative hydrogen and methane productions from an inhibitory medium could be improved using encapsulated cells.

    Download full text (pdf)
    fulltext
  • 14.
    Aktij, Sadegh Aghapour
    et al.
    Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton.
    Zirehpour, Alireza
    Membrane Research and Development, The Daneshline Company, Tehran, Iran.
    Mollahosseini, Arash
    Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Tiraferri, Alberto
    Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin, 10129, Italy.
    Rahimpour, Ahmad
    Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin, 10129, Italy.
    Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review2020In: Journal of Industrial and Engineering Chemistry, ISSN 1226-086X, E-ISSN 1876-794X, Vol. 81, p. 24-40Article in journal (Refereed)
    Abstract [en]

    Volatile fatty acids (VFAs) can be produced from fermentation/anaerobic digestion of wastes and are a valuable substrate for numerous applications, such as those related to the food, tanning, petrochemicals, pharmaceuticals, cosmetics, and chemicals industry. They are also inexpensive raw materials for developing alternative sources of energy. However, the separation and purification of VFAs produced from fermented wastewaters are not straightforward goals, due to the low concentration of these compounds in the fermentation broths and owing to the complexity of these mixtures. Cost-effective and sustainable technologies must be developed to recover VFAs efficiently and allow their beneficial use. In this paper, a comprehensive review of VFAs recovery/purification methods is provided, with focus on membrane-based processes. First, the VFAs production methods, application, and conventional processes (distillation, precipitation, adsorption, and extraction) for their recovery are briefly reviewed. Then, the ability of various membrane-based techniques to separate and purify VFAs are evaluated and discussed in detail. This discussion includes the processes of microfiltration/ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, membrane distillation, electrodialysis, membrane contractor, and pervaporation. Extensive background and examples of applications are also provided to show the effectiveness of membrane processes. Finally, challenges and future research directions are highlighted.

  • 15.
    Arabi, R.
    et al.
    University of Borås, School of Engineering.
    Bemanian, S.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Rapid Biodegradation of Methyl tert-Butyl Ether (MBTE) by Pure Bacterial cultures2007In: Iranian journal of chemistry & chemical engineering, ISSN 1021-9986, Vol. 26, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Both strains are able to grow in the presence of 48 g/l MTBE in water, which is almost the maximum concentration of MTBE in the water. They were able to completely degrade 10 g/l MTBE in less than a day. The specific degradation rate of MTBE at optimum conditions were 5.89 and 5.78 g(MTBE)/g(cells). h for B. cereus and K. terrigena, respectively. The biomass yield was 0.085 and 0.076 g/g, respectively. The cultivations were carried out successfully at 25, 30 and 37 °C, while they showed the best performance at 37 °C. Neither of the strains was able to grow and degrade MTBE anaerobically.

    Download full text (pdf)
    FULLTEXT01
  • 16.
    Arabi, R.
    et al.
    Department of Chemical Engineering, Isfahan University of Technology.
    Bemanian, S.
    Department of Chemical Engineering, Isfahan University of Technology.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rapid biodegradation of methyl tert-butyl ether (MTBE) by pure bacterial cultures2007In: Iranian Journal of Chemistry and Chemical Engineering, ISSN 1021-9986, Vol. 26, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Two pure bacterial strains capable of rapid degrading methyl tert-butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy souces and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Both strains are able to grow in the presence of 48 gl-1 MTBE in water, which is almost the maximum concentration of MTBE in the water. They were able to completely degrade 10 gl-1 MTBE in less than a day. The specific degradation rate of MTBE at optimum conditions were 5.89 and 5.78 g(MTBE) g(cells)-1 h-1 for B. cereus and K. terrigena, respectively. The biomass yield was 0.085 and 0.076 gg-1, respectively. The cultivations were carried out successfully at 25, 30 and 37 °C, while they showed the best performance at 37 °C. Neither of the strains was able to grow and degrade MTBE anaerobically.

  • 17.
    Aremu, Mujidat Omolara
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ishola, M. M.
    Göteborg Energi AB, Göteborg.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Polyhydroxyalkanoates (Phas) production from volatile fatty acids (vfas) from organic wastes by pseudomonas oleovorans2021In: Fermentation, ISSN 2311-5637, Vol. 7, no 4, article id 287Article in journal (Refereed)
    Abstract [en]

    This study aimed to investigate the production of polyhydroxyalkanoates (PHAs), a biodegradable polymer from organic wastes by Pseudomonas oleovorans. Volatile fatty acids (VFAs) from acidogenic fermentations of chicken manure (VFAs-CM) and potato peels (VFAs-PP), rich in organic matter majorly acetic (49.9%), butyric (15%) and propionic acids (11.1%) were utilized as substrates for microbial processes. During 72 h of cultivations, samples were withdrawn at intervals and analyzed for cell growth parameters, PHAs accumulation and polymeric properties. The highest biopolymer accumulation (0.39 g PHAs/g DCW) was achieved at 48 h of cultivation from medium containing VFAs-PP as the sole source of carbon. On characterization, the produced biopolymers were shown to be semi-crystalline of carbonyl C=O group. Additionally, thermogravimetric analysis (TGA) showed that the produced biopolymers demonstrated the capability to withstand thermal degradation above prescribed temperatures at which cross-linking isomerization reaction occurs, which is a vital property denoting the thermal stability of biopolymer. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 18.
    Ariyanto, T.
    et al.
    Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada.
    Cahyono, R. B.
    Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada.
    Vente, A.
    Environmental Science for Sustainable Energy and Technology, Avans Hogeschool.
    Mattheij, S.
    Department of Food and Agricultural Product Technology, Universitas Gadjah Mada.
    Millati, R.
    Department of Food and Agricultural Product Technology, Universitas Gadjah Mada.
    Sarto,
    Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Syamsiah, S.
    Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada.
    Utilization of fruit waste as biogas plant feed and its superiority compared to landfill2017In: International Journal of Technology, ISSN 2086-9614, Vol. 8, no 8, p. 1385-1392Article in journal (Refereed)
    Abstract [en]

    Fruit waste is a part of municipal solid waste which is typically disposed of directly to a landfill site. In order to utilize this valuable renewable resource, anaerobic biological processes can be employed to convert fruit waste to biogas. This usable gas is then used to generate electricity. This paper describes a comprehensive study to set up technology for converting fruit waste to electricity via biogas production. First, the fruit waste characteristics (type and composition) were systematically evaluated, and then laboratory experiments for biogas conversion to explore gas production from the waste were carried out. The biogas plant was then designed, based on the information obtained. Finally, a comparison of biogas plant with landfill was performed using life cycle assessment (LCA) to determine environmental impacts, and economic evaluation to assess daily processing costs. The results from waste characterization in one of the biggest fruit markets in Indonesia showed that the three main component fruit types were orange (64%), mango (25%), and apple (5%). Rotten fruit contributes up to 80% of the total waste in the fruit market. Based on the experimental work, the potential gas production in the biogas plant was calculated to be approximately 1075 Nm3/day, comprising 54% methane, based on 10 tons per day of fruit waste. The comparison demonstrates that it is a better option to utilize fruit waste in a biogas plant, in terms of LCA and daily operational costs, than to dispose of it in landfill. 

  • 19. Asachi, R.
    et al.
    Karimi, K.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Fungal autolysate as a nutrient supplement for ethanol and chitosan production by Mucor indicus2011In: Biotechnology letters, ISSN 0141-5492, E-ISSN 1573-6776, Vol. 33, no 12, p. 2405-2409Article in journal (Refereed)
    Abstract [en]

    Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose's. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l(-1), the extract gave a higher ethanol yield (0.47 g g(-1)) and productivity (0.71 g l(-1) h(-1)) compared to medium containing yeast extract (yield 0.45 g g(-1); productivity 0.67 g l(-1) h(-1)).

  • 20. Asachi, Reihaneh
    et al.
    Karimi, Keikhosro
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Ethanol production by Mucor indicus using the fungal autolysate as a nutrient supplement2011In: WREC11 World Renewable Energy Conference 2011, Linköping University Electronic Press , 2011, p. 1-6Conference paper (Refereed)
    Download full text (pdf)
    FULLTEXT01
  • 21.
    Asadollahzadeh, M.
    et al.
    Department of Pulp and Paper Technology, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran.
    Ghasemian, A.
    Department of Pulp and Paper Technology, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran.
    Saraeian, A.
    Department of Pulp and Paper Technology, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran.
    Resalati, H.
    Department of Wood and Paper Sciences, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, Sari, Mazandaran, Iran.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process2019In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 13, no 3, p. 5013-5031Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to convert the spent liquors obtained from acidic sulfite and neutral sulfite semi-chemical (NSSC) pulping processes into protein-rich fungal biomass. Three filamentous fungi, Aspergillus oryzae, Mucor indicus, and Rhizopus oryzae, were cultivated on the diluted spent liquors in an airlift bioreactor with airflow of 0.85 vvm at 35°C and pH 5.5. Maximum values of 10.17 g, 6.14 g, and 5.47 g of biomass per liter of spent liquor were achieved in the cultivation of A. oryzae, M. indicus, and R. oryzae on the spent sulfite liquor (SSL) diluted to 60%, respectively, while A. oryzae cultivation on the spent NSSC liquor (SNL) diluted to 50% resulted in the production of 3.27 g biomass per liter SNL. The fungal biomasses contained 407 g to 477 g of protein, 31 g to 114 g of fat, 56 g to 89 g of ash, and 297 g to 384 g of alkali-insoluble material (AIM) per kg of dry biomass. The amino acids, fatty acids, and mineral elements composition of the fungal biomasses corresponded to the composition of commercial protein sources especially soybean meal. Among the fungi examined, A. oryzae showed better performance to produce protein-rich fungal biomass during cultivation in the spent liquors.

  • 22.
    Asadollahzadeh, Mohammadtaghi
    et al.
    Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
    Ghasemian, Ali
    Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
    Saraeian, Ahmadreza
    Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
    Resalati, Hossein
    Department of Wood and Paper Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Using spent sulfite liquor for valuable fungal biomass production by Aspergilus oryzae2017In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, no 4, p. 630-638Article in journal (Refereed)
    Abstract [en]

    The recent and increasing interest in bioconversion of lignocellulosic wastes into value-added products has led to extensive research on various microorganisms and substrates. In this study, filamentous fungus Aspergillus oryzae was cultivated on spent sulfite liquor (SSL) from a pulp mill. The process using an airlift bioreactor (3.5 L working volume) was successfully carried out in 48 h with an airflow of 0.85 vvm (volume air per volume culture per minute) at 35°C and pH 5.5. The cultivation results showed that the fungal biomass concentration was higher in more diluted SSL. The highest and lowest fungal biomass concentrations when spore inoculation was used were 10.2 and 6.5 g/l SSL, in diluted SSL to 60 and 80%, respectively. The range of crude protein and total fat of the fungal biomass was 0.44 – 0.48 and 0.04 – 0.11 g/g biomass dry weight, respectively. All essential amino acids were present in acceptable quantities in the fungal biomass. The results obtained in this study have practical implications in that the fungus A. oryzae could be used successfully to produce fungal biomass protein using spent sulfite liquor for animal feed.

  • 23. Asadollahzadeh, Mohammadtaghi
    et al.
    Ghasemian, Ali
    Saraeian, Ahmadreza
    Resalati, Hossein
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Production of Fungal Biomass Protein by Filamentous Fungi Cultivation on Liquid Waste Streams from Pulping Process2018In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 13, no 3, p. 5013-5031Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to convert the spent liquors obtained from acidic sulfite and neutral sulfite semi-chemical (NSSC) pulping processes into protein-rich fungal biomass. Three filamentous fungi, Aspergillus oryzae, Mucor indicus, and Rhizopus oryzae, were cultivated on the diluted spent liquors in an airlift bioreactor with airflow of 0.85 vvm at 35 degrees C and pH 5.5. Maximum values of 10.17 g, 6.14 g, and 5.47 g of biomass per liter of spent liquor were achieved in the cultivation of A. oryzae, M. indicus, and R. oryzae on the spent sulfite liquor (SSL) diluted to 60%, respectively, while A. oryzae cultivation on the spent NSSC liquor (SNL) diluted to 50% resulted in the production of 3.27 g biomass per liter SNL. The fungal biomasses contained 407 g to 477 g of protein, 31 g to 114 g of fat, 56 g to 89 g of ash, and 297 g to 384 g of alkali-insoluble material (AIM) per kg of dry biomass. The amino acids, fatty acids, and mineral elements composition of the fungal biomasses corresponded to the composition of commercial protein sources especially soybean meal. Among the fungi examined, A. oryzae showed better performance to produce protein-rich fungal biomass during cultivation in the spent liquors.

    Download full text (pdf)
    fulltext
  • 24.
    Asadollahzadeh, Mohammadtaghi
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mahboubi, Amir
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Application of Fungal Biomass for the Development of New Polylactic Acid-Based Biocomposites2022In: Polymers, E-ISSN 2073-4360, Vol. 14, no 9Article in journal (Refereed)
    Abstract [en]

    Fungal biomass (FB), a by-product of the fermentation processes produced in large volumes, is a promising biomaterial that can be incorporated into poly(lactic acid) (PLA) to develop enhanced biocomposites that fully comply with the biobased circular economy concept. The PLA/FB composites, with the addition of triethyl citrate (TEC) as a biobased plasticizer, were fabricated by a microcompounder at 150 °C followed by injection molding. The effects of FB (10 and 20 wt %) and TEC (5, 10, and 15 wt %) contents on the mechanical, thermal and surface properties of the biocomposites were analyzed by several techniques. The PLA/FB/TEC composites showed a rough surface in their fracture section. A progressive decrease in tensile strength and Young’s modulus was observed with increasing FB and TEC, while elongation at break and impact strength started to increase. The neat PLA and biocomposite containing 10% FB and 15% TEC exhibited the lowest (3.84%) and highest (224%) elongation at break, respectively. For all blends containing FB, the glass transition, crystallization and melting temperatures were shifted toward lower values compared to the neat PLA. The incorporation of FB to PLA thus offers the possibility to overcome one of the main drawbacks of PLA, which is brittleness.

    Download full text (pdf)
    fulltext
  • 25.
    Aski, Abolfazl Lotfi
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Borghei, A.
    Islamic Azad University, Science and Research Branch, Tehran, Iran.
    Zenouzi, A.
    Iranian Research Organizations for Science and Technology (IROST), Tehran.
    Ashrafi, N.
    Department of Mechanical Engineering, Payame Noor University, Tehran.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Steam explosion pretreatment of sludge for pharmaceutical removal and heavy metal release to improve biodegradability and biogas production2020In: Fermentation, ISSN 2311-5637, Vol. 6, no 1, article id 34Article in journal (Refereed)
    Abstract [en]

    Steam explosion pretreatment was developed and evaluated to remove pharmaceuticals and heavy metals from wastewater sludge and to improve its biodegradability and methane yield. Effects of pressure (5-15 bar) and duration (1-15 min) during the pretreatment were examined, and the pretreatment efficiency was evaluated based on the solubilization degree, the capillary suction time (CST) test and anaerobic digestion. The removal efficiency of ibuprofen, acetaminophen, and amoxicillin was 65%, 69%, and 66% and 70%, 66%, and 70% in primary sludge (PS) and waste-activated sludge (WAS), respectively. The highest percent release efficiency of heavy metals, i.e., lead, cadmium, and silver, for PS and WAS was 78%, 70%, and 79% and 79%, 80%, and 75%, respectively. The highest methane yield was obtained after pretreatment at 10 bar for 15 min and at 15 bar for 10 min, with respective yields of 380 and 358 mL CH4/g volatile solids (VS) for the PS and 315 and 334 mL CH4/g VS for the WAS. The results of methane production indicated that the decreased concentrations of pharmaceuticals and heavy metals resulted in increased biodegradability of PS and WAS. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

    Download full text (pdf)
    fulltext
  • 26.
    Aski, Abolfazl Lotfi
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Borghei, Alimohammad
    Department of Biosystem Mechanical Engineering, Islamic Azad University Tehran Science and Research Branch.
    Zenouzi, Ali
    Iranian Research Organizations for Science and Technology (IROST).
    Ashrafi, Nariman
    Department of Mechanical and Aerospace Engineering, Islamic Azad University Tehran Science and Research Branch.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Effect of Steam Explosion on the Structural Modification of Rice Straw for Enhanced Biodegradation and Biogas Production2019In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, no 1, p. 464-485Article in journal (Refereed)
    Abstract [en]

    The goal of this study was to develop an operational steam explosion pretreatment for effective modification of rice straw chemical structure in order to improve its biodegradability and methane yield. The parameters of pressure (5 bar to 15 bar), moisture (0% to 70%), and time (1 min to 15 min) were studied in steam explosion pretreatment. The steam explosion efficiency was investigated according to the changes in crystallinity structure and chemical composition on rice straw, as well as the methane yield from straw. Steam explosion changed the structure linkages between the lignin and carbohydrate, which was indicated by a reduction in the peak intensities in the bonds from 1648 cm(-1) to 1516 cm(-1). After pretreatment, the crystallinity index of the rice straw in the 10 bar-10 min cycle with no moisture and 15 bar-10 min cycle with 70% moisture increased from 22.9% to 28.3% and 28.6%, respectively. Steam explosion efficiently decreased the lignin. The highest reduction in the amount of lignin was observed with the 10 bar-10 min cycle, which reached from 18.6% to 13.0%. The methane yield increased with the cycles 10 bar-10 min and 15 bar-15 min with 35% moisture, and 15 bar-10 min with 70% moisture by 113%, 104%, and 147% compared to that of the untreated straw, respectively. Moreover, the highest biodegradation percent of the rice straw was obtained in these cycles.

    Download full text (pdf)
    fulltext
  • 27.
    Aslanzadeh, S.
    et al.
    University of Borås, School of Engineering.
    Rajendran, K.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    A comparative study between single- and two-stage anaerobic digestion processes: Effects of organic loading rate and hydraulic retention time2014In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 95, p. 181-188Article in journal (Refereed)
    Abstract [en]

    The effect of an organic loading rate (OLR) and a hydraulic retention time (HRT) was evaluated by comparing the single-stage and two-stage anaerobic digestion processes. Wastes from the food processing industry (FPW) and the organic fraction of the municipal solid waste (OFMSW) were used as substrates. The OLR was increased at each step from 2 gVS/l/d to 14 gVS/l/d, and the HRT was decreased from 10 days to 3 days. The highest theoretical methane yield achieved in the single-stage process was about 84% for the FPW during an OLR of 3 gVS/l/d at a HRT of 7 days and 67% for the OFMSW at an OLR of 2 gVS/l/d and a HRT of 10 days. The single-stage process could not handle a further increase in the OLR and a decrease in the HRT; thus, the process was stopped. A more stable operation was observed at higher OLRs and lower HRTs in the two-stage system. The OLR could be increased to 8 gVS/l/d for the FPW and to 12 gVS/l/d for the OFMSW, operating at a HRT of 3 days. The results show a conclusion of 26% and 65% less reactor volume for the two-stage process compared to the single-stage process for the FPW and the OFMSW, respectively.

  • 28.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Berg, Andreas
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Sárvári Horváth, Ilona
    University of Borås, School of Engineering.
    Biogas Production from N-Methylmorpholine-N-oxide (NMMO) Pretreated Forest Residues2014In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 172, no 6, p. 2998-3008Article in journal (Refereed)
    Abstract [en]

    Lignocellulosic biomass represents a great potential for biogas production. However, a suitable pretreatment is needed to improve their digestibility. This study investigates the effects of an organic solvent, N-Methylmorpholine-N-oxide (NMMO) at temperatures of 120 and 90 °C, NMMO concentrations of 75 and 85 % and treatment times of 3 and 15 h on the methane yield. The long-term effects of the treatment were determined by a semicontinuous experiment. The best results were obtained using 75 % NMMO at 120 °C for 15 h, resulting in 141 % increase in the methane production. These conditions led to a decrease by 9 % and an increase by 8 % in the lignin and in the carbohydrate content, respectively. During the continuous digestion experiments, a specific biogas production rate of 92 NmL/gVS/day was achieved while the corresponding rate from the untreated sample was 53 NmL/gVS/day. The operation conditions were set at 4.4 gVS/L/day organic loading rate (OLR) and hydraulic retention time (HRT) of 20 days in both cases. NMMO pretreatment has substantially improved the digestibility of forest residues. The present study shows the possibilities of this pretreatment method; however, an economic and technical assessment of its industrial use needs to be performed in the future.

  • 29. Aslanzadeh, Solmaz
    et al.
    Ishola, Mofoluwake M.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Richards, Tobias
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    An Overview of Existing Individual Unit Operations2014In: Biorefineries: Integrated Biochemical Processes for Liquid Biofuels, Elsevier Inc. , 2014Chapter in book (Refereed)
    Abstract [en]

    BACKGROUND: Because of its extreme toxicity for microorganisms, the limonene content of citrus wastes (CWs) has been a major obstacle to the conversion of CWs to biofuels. The main objective of this study was to develop a new process for the utilization of CWs that can be economically feasible when the supply of CW is low.

    RESULTS: Steam explosion pre-treatment was applied to improve the anaerobic digestibility of CWs, resulting in a decrease of initial limonene concentration by 94.3%. A methane potential of 0.537 ± 0.001 m 3 kg -1 VS (volatile solids) was obtained during the following batch digestion of treated CWs, corresponding to an increase of 426% compared with that of the untreated samples. Long-term effects of the treatment were further investigated by a semi-continuous co-digestion process. A methane production of 0.555 ± 0.0159 m 3 CH 4 kg -1 VS day -1 was achieved when treated CWs (corresponding to 30% of the VS load) were co-digested with municipal solid waste.

    CONCLUSION: The process developed can easily be applied to an existing biogas plant. The equipment cost for this process is estimated to be one million USD when utilizing 10 000 tons CWs year -1. 8.4 L limonene and 107.4 m 3 methane can be produced per ton of fresh citrus wastes in this manner. 

  • 30.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Rajendran, Karthik
    University of Borås, School of Engineering.
    Jeihanipour, Azam
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System2013In: Energies, E-ISSN 1996-1073, Vol. 6, no 6, p. 2966-2981Article in journal (Refereed)
    Abstract [en]

    The effect of recirculation in increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR) and an upflow anaerobic sludge bed (UASB) was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system) and the other without recirculation (open system). For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

    Download full text (pdf)
    FULLTEXT01
  • 31.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Rajendran, Karthik
    University of Borås, School of Engineering.
    Jeihanipour, Azam
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Waste textile processing into biogas using two-stage reactors2013Conference paper (Other academic)
  • 32.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Rajendran, Karthik
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    A comparative study between conventional and two stage anaerobic process: Effect of organic loading rate and hydraulic retention time2013In: / [ed] Shu Li, Jegatheesan Veeriah, Keir Greg, Kier Merrin, Chang Chia-Yuan, CESE 2013 , 2013Conference paper (Refereed)
  • 33.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Rajendran, Karthik
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Pretreatment of Lignocelluloses for Biogas and Ethanol Processes2014In: Advances in Industrial Biotechnology / [ed] Ram Sarup Singh, Ashok Pandey, Christian Larroche, Asiatech Publishers Inc , 2014, p. 125-150Chapter in book (Refereed)
  • 34.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Rajendran, Karthik
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Pretreatment of lignocelluloses for biogas and ethanol processes2013In: Advances in Industrial Biotechnology / [ed] Ram Sarup Singh, Ashok Pandey, Christian Larroche, I. K. International Publishing House , 2013, p. 125-150Chapter in book (Other academic)
  • 35.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sárvári Horváth, Ilona
    University of Borås, Faculty of Textiles, Engineering and Business.
    Pretreatment of straw fraction of manure for improved biogas production2011In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 6, no 4, p. 5193-5205Article in journal (Refereed)
    Abstract [en]

    Pretreatment of straw separated from cattle and horse manure using N-methylmorpholine oxide (NMMO) was investigated. The pretreatment conditions were for 5 h and 15 h at 120 °C, and the effects were evaluated by batch digestion assays. Untreated cattle and horse manure, both mixed with straw, resulted in 0.250 and 0.279 Nm3 CH4/kgVS (volatile solids), respectively. Pretreatment with NMMO improved both the methane yield and the degradation rate of these substrates, and the effects were further amplified with more pretreatment time. Pretreatment for 15 h resulted in an increase of methane yield by 53% and 51% for cattle and horse manure, respectively. The specific rate constant, k0, was increased from 0.041 to 0.072 (d-1) for the cattle and from 0.071 to 0.086 (d-1) for the horse manure. Analysis of the pretreated straw shows that the structural lignin content decreased by approximately 10% for both samples and the carbohydrate content increased by 13% for the straw separated from the cattle and by 9% for that separated from the horse manure. The crystallinity of straw samples analyzed by FTIR show a decrease with increased time of NMMO pretreatment.

    Download full text (pdf)
    fulltext
  • 36.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Sárvári Horváth, Ilona
    University of Borås, School of Engineering.
    Pretreatment of straw fraction of manure for improved biogas production2011In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 6, no 4, p. 5193-5205Article in journal (Refereed)
  • 37.
    Astiani, D.
    et al.
    Faculty of Forestry, Universitas Tanjungpura.
    Curran, L. M.
    Burhanuddin,
    Faculty of Forestry, Universitas Tanjungpura.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mujiman,
    Lembaga Landscape Livelihood Indonesia Pontianak.
    Hatta, M.
    Faculty of Forestry, Universitas Tanjungpura.
    Pamungkas, W.
    Faculty of Forestry, Universitas Tanjungpura.
    Gusmayanti, Evi
    Lembaga Landscape Livelihood Indonesia Pontianak.
    Fire-Driven Biomass And Peat Carbon Losses And Post-Fire Soil Co2 Emission In A West Kalimantan Peatland Forest2018In: Journal of Tropical Forest Science, ISSN 0128-1283, Vol. 30, no 4, p. 570-575Article in journal (Refereed)
    Abstract [en]

    Indonesian peatland forest is considered a huge sink of tropical carbon and thereby make significant contribution to global terrestrial carbon storage. However, landcover and landuse changes in this ecosystem have incurred a synergistic exposure to drought and wildfires. Deforestation and forest degradation through combustion and decomposition of forest biomass and soil carbon have become global issues because of their greenhouse gas contribution to global climate change. Thus fire-driven carbon losses in these peatlands have increased the need to evaluate the impacts of fire at a landscape scale. In 6-10 week dry periods from January to April 2014 and in January 2015, wildfires burnt peatland forest in Kubu Raya, West Kalimantan province (Indonesian Borneo). An assessment was conducted to provide more reliable estimates of the effects of fire on aboveground and soil carbon losses and their dynamics in the coastal peatlands of the province. Carbon loss from combustion of both aboveground biomass and peat soil was substantial. Moreover, CO2 emission from soil respiration at the burnt peat surface increased 46% over the first 9 months after the fire. This study clearly showed the magnitude of fire-driven carbon loss and the scale of CO2 emission to the atmosphere arising from fire in tropical peatland forest.

  • 38.
    Astiani, D
    et al.
    Faculty of Forestry, Universitas Tanjungpura.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Gusmayanti, E
    Faculty of Agriculture, Universita Tanjungpura.
    Widiastuti, T
    Faculty of Forestry, Universitas Tanjungpura.
    Burhanuddin,
    Faculty of Forestry, Universitas Tanjungpura.
    Local knowledge on landscape sustainable-hydrological management reduces soil co2 emission, fire risk and biomass loss in west Kalimantan Peatland, Indonesia2019In: Biodiversitas, ISSN 1412-033X, E-ISSN 2085-4722, Vol. 20, no 3Article in journal (Refereed)
    Abstract [en]

    Astiani D, TaherzadehMJ, Gusmayanti E, WidiastutiT, Burhanuddin.2019. Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in West Kalimantan Peatland, Indonesia.Biodiversitas 20:725-731.Local knowledge in managing peatlands, especially in the area of peat hydrology, has been practiced through generations to manage peatlands for agriculture and small scale gardens. Farmers in West Kalimantan have developed the way to conserve water by making simple dams using soil or woody plants to hold water from the peat upstream areas on small channels or rivers. To reduce puddles during rain or tides, people make small trenches, so-called parit cacingin the middle of the larger channel. The trench cross-section size is ~30-40 cm2. This channel can maintain the peat waterlevel to the extent of the depth of the channel. These channels, at the same time, are useful, for a clear, easy land ownership border for one farmer family land. The results of COemissions assessment at various water levels on the peatland landscape demonstrate that the landscape which surrounded by the parit cacingtrenches can maintain lower CO2 emissions compared to the one that has deeper water levels. The knowledge to develop this channel has also reduced the risk of peatland fire hazard and the amount of peat biomass loss on a fire event. An assessment on the effect of water level on the loss of peat biomass when burned, reduce 30-78% loss risks if compared to water table depth of 60-80cm, which is assumed as general practices on peatland recently.The practices of the knowledge on peatlands hydrology management can reduce the risk of peatland soil CO2 emission as well as loss of peat mass through decomposition and during peat fires.

    Download full text (pdf)
    fulltext
  • 39.
    Awasthi, M
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Duan, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Awasthi, S. K.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Liu, T.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Chen, H.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Pandey, A.
    Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology, Lucknow, 226 001, India.
    Zhang, Z.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Emerging applications of biochar: Improving pig manure composting and attenuation of heavy metal mobility in mature compost2020In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 389Article in journal (Refereed)
    Abstract [en]

    This study evaluated the effect of integrated bacterial culture and biochar on heavy metal (HM) stabilization and microbial activity during pig manure composting. High-throughput sequencing was carried out on six treatments, namely T1-T6, where T2 was single application of bacteria culture (C), T3 and T5 were supplemented with 12 % wood (WB) and wheat-straw biochar (WSB), respectively, and T4 and T6 had a combination of bacterial consortium mixed with biochar (12 % WB and 12 % WSB, respectively). T1 was used as control for the comparison. The results show that the populations of bacterial phyla were significantly greater in T6 and T4. The predominate phylum were Proteobacteria (56.22 %), Bacteroidetes (35.40 %), and Firmicutes (8.38 %), and the dominant genera were Marinimicrobium (53.14 %), Moheibacter (35.22 %), and Erysipelothrix (5.02 %). Additionally, the correlation analysis revealed the significance of T6, as the interaction of biochar and bacterial culture influenced the HM adsorption efficiency and microbial dynamics during composting. Overall, the integrated bacterial culture and biochar application promoted the immobilization of HMs (Cu and Zn) owing to improved adsorption, and enhanced the abundance and selectivity of the bacterial community to promote degradation and improving the safety and quality of the final compost product. © 2020 Elsevier B.V.

  • 40.
    Awasthi, Mukesh Kumar
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Shaanxi Province, Yangling, 712100, China.
    Amobonye, Ayodeji
    Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
    Bhagwat, Prashant
    Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
    Ashokkumar, Veeramuthu
    Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
    Gowd, Sarath C.
    Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India.
    Dregulo, Andrei Mikhailovich
    National Research University “Higher School of Economics”, 17 Promyshlennaya str, Saint-Petersburg, 198095, Russian Federation.
    Rajendran, Karthik
    National Research University “Higher School of Economics”, 17 Promyshlennaya str, Saint-Petersburg, 198095, Russian Federation.
    Flora, G.
    Department of Botany, St. Mary's College (Autonomous), Tamil Nadu, India.
    Kumar, Vinay
    Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.
    Pillai, Santhosh
    Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
    Zhang, Zengqiang
    College of Natural Resources and Environment, Northwest A&F University, Shaanxi Province, Yangling, 712100, China.
    Sindhu, Raveendran
    Department of Food Technology, TKM Institute of Technology, Kerala, Kollam, 691 505, India.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Biochemical engineering for elemental sulfur from flue gases through multi-enzymatic based approaches – A review2024In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 914, article id 169857Article, review/survey (Refereed)
    Abstract [en]

    Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications. 

  • 41.
    Awasthi, Mukesh Kumar
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Ganeshan, Prabakaran
    Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
    Gohil, Nisarg
    Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
    Kumar, Vinay
    Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India.
    Singh, Vijai
    Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
    Rajendran, Karthik
    Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
    Harirchi, Sharareh
    University of Borås, Faculty of Textiles, Engineering and Business.
    Solanki, Manoj Kumar
    Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
    Sindhu, Raveendran
    Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India.
    Binod, Parameswaran
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
    Zhang, Zengqiang
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Advanced approaches for resource recovery from wastewater and activated sludge: A review2023In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 384, article id 129250Article, review/survey (Refereed)
    Abstract [en]

    Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.

  • 42.
    Awasthi, Mukesh Kumar
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Kumar, Vinay
    Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India.
    Hellwig, Coralie
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wikandari, Rachma
    Harirchi, Sharareh
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sar, Taner
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wainaina, Steven
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sindhu, Raveendran
    Binod, Parameswaran
    Zhang, Zengqiang
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects2023In: Food Research International, ISSN 0963-9969, E-ISSN 1873-7145, Vol. 164, article id 112318Article in journal (Refereed)
    Abstract [en]

    Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.

  • 43.
    Awasthi, S. K.
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Duan, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Liu, T.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Zhang, Z.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Pandey, A.
    Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
    Varjani, S.
    Gujarat Pollution Control Board, Gandhinagar - 382010, Gujarat, India.
    Mukesh Kumar, Awasthi
    University of Borås, Faculty of Textiles, Engineering and Business. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?2021In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 406, article id 124593Article in journal (Refereed)
    Abstract [en]

    In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1−T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88–14.32%), Actinobacteria (35.20–4.99%), Bacteroidetes (0.05–15.07%) and Proteobacteria (0.01–20.28%) with elevated biochar concentration (0%−10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality. 

  • 44.
    Awasthi, S. K.
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Duan, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Liu, T.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Zhou, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Qin, S.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Liu, H.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Varjani, S.
    Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
    Mukesh Kumar, Awasthi
    University of Borås, Faculty of Textiles, Engineering and Business. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Zhang, Z.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
    Pandey, A.
    Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process2021In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 291, article id 125947Article in journal (Refereed)
    Abstract [en]

    In this study, we investigated the influence of coconut shell biochar (CSB) on heavy metal resistance fungi (HMRF) during poultry manure (PM) composting by 18 S rDNA Internal Transcribed Spacer Amplicon Sequencing analysis. Five different concentrations of CSB (2.5%, 5%, 7.5%, and 10% dry weights basis) were applied with a mixture of PM and wheat straw (5:1 ratio dry weight basis) and without CSB (CK) was used as control. The results showed that sequence number rose along with increasing CSB concentration but total relative abundance (RA) of HMRF decreased 56.33%, 74.65% in T4 and T5, respectively. However, greater RA of HMRF was found in T1 or without biochar applied treatment. The phylum of Basidiomycota was the dominant fungal community accounting for 61.14%, 6.16%, 32.18%, 74.65%, and 73.73% from T1 to T5 of the total fungi abundance, with wide presence of the Wallemiomycetes and Eurotiomycetes classes. The Wallemia and Aspergillus were the richest genus and species. Wallemia_sebi, Altemaria_alternata and Aspergillus_amoenus were detected having greater abundance among all treatments. Besides this, the network correlation pattern confirmed that the relative greater percentage of correlation among dominant HMRF community with bio-available HM and other physicochemical factors increased with the addition of biochar. There was reasonable infer that the biochar amendment in composting could constitute favorable habitat for an active fungal population. 

  • 45.
    Awasthi, S K
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
    Kumar, M
    CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
    Sarsaiya, S
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
    Ahluwalia, V
    Institute of Pesticide Formulation Technology, Gurugram, Haryana, 122 016, India.
    Chen, H Y
    Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany.
    Kaur, G
    Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
    Sirohi, R
    Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea.
    Sindhu, R
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India.
    Binod, P
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India.
    Pandey, A
    Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
    Rathour, R
    CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
    Kumar, S
    CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
    Singh, L
    CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
    Zhang, Z Q
    College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Awasthi, M K
    College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
    Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies2022In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 341, article id 130862Article in journal (Refereed)
    Abstract [en]

    Livestock manure (LSM) is a profitable waste if handled sensibly, but simultaneously it imposes several environmental and health impacts if managed improperly. Several approaches have been adopted globally to cartel the problem associated with LSM management and recovery of value-added products, still, technological innovation needs further upgradation in consideration with the environment, energy, and economy. This review delivered a vibrant portrait of manure management, which includes, bioenergy generation and resource recovery strategies, their current scenario, opportunities, challenges, and prospects for future researches along with global regulations and policies. Several bioenergy generation and nutrient recoveries technologies have been discussed in details, still, the major glitches allied with these technologies are its high establishment costs, operational costs, manure assortment, and digestate handling. This review also discussed the techno-economic assessment (TEA) and life cycle assessment (LCA) of LSM management operation in the context of their economical and environmental sustainability. Still, extensive researches needed to build an efficient manure management framework to advance the integrated bioenergy production, nutrients recycling, and digestate utilization with least environmental impacts and maximal economical gain, which has critically discussed in the current review.

  • 46.
    Babolanimogadam, Nima
    et al.
    Department of Food Hygiene, Faculty of Veterinary Medicine University of Tehran Tehran Iran.
    Gandomi, Hassan
    Department of Food Hygiene, Faculty of Veterinary Medicine University of Tehran Tehran Iran.
    Akhondzadeh Basti, Afshin
    Department of Food Hygiene, Faculty of Veterinary Medicine University of Tehran Tehran Iran.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α‐amylase, and sprouting treatments2022In: Food Science & Nutrition, E-ISSN 2048-7177Article in journal (Refereed)
    Abstract [en]

    In this study, the effects of different treatments of the oat slurry on the nutritional, functional, and sensorial properties of oat milk were evaluated. The sprouting and sprouting–acidic treatments have the highest oat milk yield (91.70%) and protein extraction yield (82.74%), respectively. The protein concentrations of alkali, sprouting–acidic, and α-amylase–alkali treatments were significantly (p < .05) higher than other treatments. The alkali treatments showed higher fat content (0.66%). In addition, acidic and alkali treatments in single or combined with other treatments showed the highest dry matter and energy value. The carbohydrate content of α-amylase–alkali treatment (4.35%) was higher than other treatments and also, all acidic treatments showed higher ash content (>1) compared to the other treatments. Furthermore, the sprouting–α-amylase and acidic–α-amylase showed the lowest starch (0.28%) and the highest reducing sugar content (3.15%) compared to the other treatments, respectively. Moreover, the α-amylase–alkali treatment showed the highest total phenolic content and antioxidant activity (342.67 mg GAE/L and 183.08 mg BHT eq/L, respectively). Furthermore, sensory evaluation of most treatments showed acceptable scores (≥7) for consumers, especially in the case of α-amylase, sprouting, and α-amylase–sprouting treatments. Results show that the different treatments had different effects on the nutritional, functional, and sensorial properties of oat milk. In conclusion, from the nutritional and functional point of view, the two-stage treatments were more effective than singular treatments on investigated factors proposing their application in functional plant milk preparation. 

    Download full text (pdf)
    fulltext
  • 47.
    Barghi, H.
    et al.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Synthesis of an electroconductive membrane using poly(hydroxymethyl-3,4-ethylenedioxythiophene-co-tetramethylene-N-hydroxyethyl adipamide)2013In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 1, no 39, p. 6347-6354Article in journal (Refereed)
    Abstract [en]

    Synthesis of a novel electroconductive membrane (ECM) was studied with the aim of producing an electroconductive membrane (ECM) with low electrical resistance and appropriate mechanical properties. The method was based on copolymerization of a highly electroconductive monomer (hydroxymethyl-3,4-ethylenedioxythiophene) with highly mechanical resistant hydrophilized polyamide 46 (polytetramethylene-N-hydroxyethyl adipamide). Due to the lack of hydroxyl groups, polyamide 46 does not have the tendency to take part in any chemical reactions, therefore prior to copolymerization, PA 46 was hydrophilized with acetaldehyde to create reactive sites, which allowed copolymerization to occur. At the final stage, a very thin layer, 566 nm conductive poly(hydroxymethyl-3,4-ethylenedioxythiophene) homopolymer was localised using in situ plasma polymerization in order to improve the electrical conductivity of the obtained copolymer. The result was an adherent, highly conductive, semi-hydrophilic and flexible ECM. The presence of hydroxyl groups in the final product led to improved hydrophilicity of the conductive membrane with a surface tension of 41 mJ m−2. The electrical resistance of PA 46 was dramatically reduced after copolymerization, to 202 in dry and 54 kΩ cm−2 in wet conditions; furthermore, after plasma treatment, this reduction continued to 105 in dry and 2 kΩ cm−2 in wet conditions. Other parameters such as flux flow, roughness, pore size, pore distribution, contact angle, surface energy and thermal stability of the ECM were also investigated.

  • 48.
    Barghi, Hamidreza
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Catalytic Synthesis of Bulk Hydrophilic Acetaldehyde-Modified Polyamide 462014In: Current Organic Synthesis, ISSN 1570-1794, E-ISSN 1875-6271, Vol. 11, no 6, p. 288-294Article in journal (Refereed)
    Abstract [en]

    Hydrophilization of Polyamide 46 (PA46) via modification with acetaldehyde in continuous phase was studied. The chemical modification of PA 46 with acetaldehyde resulted in a water-swollen polymer with hydrophilic property. The polyamide 46 undergoes a nucleophilic addition with acetaldehyde in the presence of aluminum chloride as a catalyst. The extent of bulk hydroxyethylation using AlCl3 resulted in 95.65% modification counted as total N-hydroxyethylated polyamide 46. The modification resulted in improved hydrophilic properties, and a maximum surface free energy of 44.6 mJ/m2 was achieved after 3 h reaction, whereas the unmodified PA46 had a surface free energy of 11.2 mJ/m2. In addition, thermal properties of the polymers were studied using differential scanning calorimetry and thermogravimetric analyses. The functionalization leads to decrease in the crystallization energy from 88 J/g to 51 J/g, while the melting energy is changed from 110 J/g to 53 J/g. Furthermore, the thermal stability of the PA46 to pyrolysis was diminished after hydroxylation.

  • 49.
    Barghi, Hamidreza
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Synthesis and characterization of novel bulk hydrophilic acetaldehyde modified polyamide 462011Conference paper (Other academic)
  • 50.
    Barghi, Hamidreza
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bulk Hydrophilic Functionalization of Polyamide 462013Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    (EN)A modified polymer as result of a bulk functionalization of polyamide 46 (PA 46) is presented, as well as methods for synthesizing the modified polymer. This functionalization of PA 46 is performed to provide a homogenous semi-permeable polyamide 46 capable of different charges and different porosities with particles of nanoscale size in order to replace or improve other polyamide fibers used in the textile industry, filtering processes, selective sorption, controlled release devices, phase transfer catalysts, chromatography media, biocompatible capsules, artificial skins, organs, bone void repair as well as in cell bioreactors and incubators, dental impliments, medical devices, clothing, detectors, perfusion devices, in regenerative medicine, and fuel cells. (FR)Un polymère modifié comme résultat d'une fonctionnalisation en masse de polyamide 46 (PA 46) est présenté, ainsi que des procédés de synthèse du polymère modifié. Cette fonctionnalisation de PA 46 est effectuée pour fournir un polyamide 46 semi-perméable homogène apte à des différentes charges et de différentes porosités avec des particules d'une dimension à l'échelle nanométrique afin de remplacer ou d'améliorer d'autres fibres de polyamide utilisées dans l'industrie textile, les procédés de filtration, la sorption sélective, les dispositifs à libération entretenue, les catalyseurs de transfert de phase, les supports de chromatographie, les capsules biocompatibles, les peaux artificielles, les organes, la réparation de cavités osseuses ainsi que les bioréacteurs et incubateurs de cellules, les implants dentaires, les dispositifs médicaux, les vêtements, les détecteurs, les dispositif de perfusion, en médecine régénérative et dans les piles à combustible.

1234567 1 - 50 of 594
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf