Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bátori, Veronika
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Jabbari, Mostafa
    University of Borås, Faculty of Textiles, Engineering and Business.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling2017In: International Journal of Polymer Science, ISSN 1687-9422, E-ISSN 1687-9430, Vol. 2017, p. 1-9, article id 9732329Article in journal (Refereed)
    Abstract [en]

    While citrus waste is abundantly generated, the disposal methods used today remain unsatisfactory: they can be deleterious for ruminants, can cause soil salinity, or are not economically feasible; yet citrus waste consists of various valuable polymers. This paper introduces a novel environmentally safe approach that utilizes citrus waste polymers as a biobased and biodegradable film, for example, for food packaging. Orange waste has been investigated for biofilm production, using the gelling ability of pectin and the strength of cellulosic fibres. A casting method was used to form a film from the previously washed, dried, and milled orange waste. Two film-drying methods, a laboratory oven and an incubator shaker, were compared. FE-SEM images confirmed a smoother film morphology when the incubator shaker was used for drying. The tensile strength of the films was 31.67 ± 4.21 and 34.76 ± 2.64 MPa, respectively, for the oven-dried and incubator-dried films, which is within the range of different commodity plastics. Additionally, biodegradability of the films was confirmed under anaerobic conditions. Films showed an opaque appearance with yellowish colour.

  • 2.
    Bátori, Veronika
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mostafa, Jabbari
    Srivastava, Rajiv K.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R
    University of Borås, Faculty of Textiles, Engineering and Business.
    Zamani, Akram
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Synthesis and characterization of maleic anhydride-grafted orange waste for potential use in biocomposites2018In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 13, no 3, p. 4986-4997Article in journal (Refereed)
  • 3.
    Hatamvand, Mohammad
    et al.
    Yazd University.
    Mirjalili, Seyed Abbas
    Yazd University.
    Sharzehee, Maryam
    Yazd University.
    Behjat, Abbas
    Yazd University.
    Jabbari, Mostafa
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells2017In: Optik (Stuttgart), ISSN 0030-4026, E-ISSN 1618-1336, Vol. 40, p. 443-450Article in journal (Refereed)
    Abstract [en]

    Perovskite solar cells (PSCs) are a new generation solar cells. Low-Temperature techniques are used for fabrication PSCs on a flexible substrate that has a low thermal tolerance. In this paper, low-temperature PSCs with ZnO nanoparticles were prepared as electron transport material (ETM) without hole transport material (HTM). Effects of some of the fabrication parameters of low-temperature ZnO based PSCs without HTM, on their principal characteristics and performance, were investigated. Parameters such as the concentration of ZnO nanoparticles (NPs) dispersion, spin coating speed of ZnO NPs, and concentration of CH3NH3I on characteristics and performance of fabricated low-temperature PSCs were studied. The study shows that by changing these parameters, the performance of the fabricated PSCs changes considerably.

  • 4.
    Jabbari, Mostafa
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Osadolor, Osagie Alex
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nair, Ramkumar B
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    All-polyamide composite coated-fabric as an alternative material of construction for textile-bioreactors (TBRs)2017In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 11Article in journal (Refereed)
    Abstract [en]

    All-polyamide composite coated-fabric (APCCF) was used as an alternative material for the construction of textile-bioreactors (TBRs), which are prepared as a replacement of the traditional stainless steel bioreactors (SSBRs) or concrete-based bioreactors. The material characteristics, as well as the fermentation process performance of the APCCF-TBR, was compared with a TBR made using the polyvinyl chloride (PVC)-coated polyester fabric (PVCCF). The TBRs were used for the anaerobic fermentation process using baker's yeast; and, for aerobic fermentation process using filamentous fungi, primarily by using waste streams from ethanol industries as the substrates. The results from the fermentation experiments were similar with those that were obtained from the cultivations that were carried out in conventional bioreactors. The techno-economic analysis conducted using a 5000 m3 APCCF-TBR for a typical fermentation facility would lead to a reduction of the annual production cost of the plant by 128,000,000 when compared to similar processes in SSBR. The comparative analyses (including mechanical and morphological studies, density measurements, thermal stability, ageing, and techno-economic analyses) revealed that the APCCF is a better candidate for the material of construction of the TBR. As the APCCF is a 100% recyclable single-polymer composite, which was prepared from Nylon 66 textile production-line waste, it could be considered as an environmentally sustainable product. 

  • 5.
    Jabbari, Mostafa
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    New Solvent for Polyamide 66 and Its Use for Preparing a Single-Polymer Composite-Coated Fabric2018In: International Journal of Polymer Science, ISSN 1687-9422, E-ISSN 1687-9430Article in journal (Refereed)
    Abstract [en]

    Polyamides (PAs) are one of the most important engineering polymers; however, the difficulty in dissolving them hinders their applications. Formic acid (FA) is the most common solvent for PAs, but it has industrial limitations. In this contribution, we proposed a new solvent system for PAs by replacing a portion of the FA with urea and calcium chloride (FAUCa). Urea imparts the hydrogen bonding and calcium ion from the calcium chloride, as a Lewis acid was added to the system to compensate for the pH decrease due to the addition of urea. The results showed that the proposed solvent (FAUCa) could readily dissolve PAs, resulting in a less decrease in the mechanical properties during the dissolution. The composite prepared using the FAUCa has almost the same properties as the one prepared using the FA solution. The solution was applied on a polyamide 66 fabric to make an all-polyamide composite-coated fabric, which then was characterized. The FAUCa solution had a higher viscosity than the one prepared using the neat FA solvent, which can be an advantage in the applications which need higher viscosity like preparing the all-polyamide composite-coated fabric. A more viscous solution makes a denser coating which will increase the water /gas tightness. In conclusion, using the FAUCa solvent has two merits: (1) replacement of 40% of the FA with less harmful and environmentally friendly chemicals and (2) enabling for the preparation of more viscous solutions, which makes a denser coating.

  • 6.
    Osadolor, Osagie Alex
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nair, Ramkumar B
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Effect of media rheology and bioreactor hydrodynamics on filamentous fungi fermentation of lignocellulosic and starch-based substrates under pseudoplastic flow conditions2018In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 263, p. 250-257Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to study how media rheology and bioreactor hydrodynamics would influence fermentation of lignocellulosic and starch-based substrates under pseudoplastic flow conditions. This was investigated using hydrolyzed wheat straw, wheat-based thin stillage and filamentous fungi as inoculum in bubble column, airlift and horizontal hybrid tubular/bubble column (textile bioreactor) bioreactors. The rheological models showed that the consistency index was dependent on biomass growth (R2 0.99) while the flow behavior index depended on biomass growth and suspended solid (R2 0.99). Oxygen transfer rate above 0.356 mmol-O2/L/h was needed for growing fungi with a cube-root growth rate constant of 0.03 g1/3/L1/3/h. At 1.4 VVM aeration the textile bioreactor performed better than others with minimal foaming, yields of 0.22 ± 0.01 g/g and 0.47 ± 0.01 g/g for ethanol and biomass, substrate consumption rate of 0.38 g/L/h. Operating the bioreactors with air-flowrate to cross-sectional area ratio of 8.75 × 10−3 (m3/s/m2) or more led to sustained foaming.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf