Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Uusi-Tarkka, Eija-Katriina
    et al.
    School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, FI-80101 Joensuu, Finland.
    Levanič, Jaka
    Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
    Heräjärvi, Henrik
    Natural Resources Institute Finland, FI-80130 Joensuu, Finland.
    Kadi, Nawar
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Haapala, Antti
    School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, FI-80101 Joensuu, Finland; FSCN Research Centre, Mid Sweden University, SE-85170 Sundsvall, Sweden.
    All-Cellulose Composite Laminates Made from Wood-Based Textiles: Effects of Process Conditions and the Addition of TEMPO-Oxidized Nanocellulose2022In: Polymers, E-ISSN 2073-4360, Vol. 14, no 19, article id 3959Article in journal (Refereed)
    Abstract [en]

    All-cellulose composites (ACCs) are manufactured using only cellulose as a raw material. Biobased materials are more sustainable alternatives to the petroleum-based composites that are used in many technical and life-science applications. In this study, an aquatic NaOH-urea solvent system was used to produce sustainable ACCs from wood-based woven textiles with and without the addition of TEMPO-oxidized nanocellulose (at 1 wt.-%). This study investigated the effects of dissolution time, temperature during hot press, and the addition of TEMPO-oxidized nanocellulose on the mechanical and thermal properties of the composites. The results showed a significant change in the tensile properties of the layered textile composite at dissolution times of 30 s and 1 min, while ACC elongation was the highest after 2 and 5 min. Changes in hot press temperature from 70 °C to 150 °C had a significant effect: with an increase in hot press temperature, the tensile strength increased and the elongation at break decreased. Incorporating TEMPO-oxidized nanocellulose into the interface of textile layers before partial dissolution improved tensile strength and, even more markedly, the elongation at break. According to thermal analyses, textile-based ACCs have a higher storage modulus (0.6 GPa) and thermal stabilization than ACCs with nanocellulose additives. This study highlights the important roles of process conditions and raw material characteristics on the structure and properties of ACCs. 

    Download full text (pdf)
    fulltext
  • 2.
    Uusi-Tarkka, Eija-Katriina
    et al.
    School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, FI-80101 Joensuu, Finland.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business. Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190 Borås, Sweden.
    Khalili, Pooria
    University of Borås, Faculty of Textiles, Engineering and Business. Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190 Borås, Sweden.
    Heräjärvi, Henrik
    Natural Resources Institute Finland, FI-80100 Joensuu, Finland.
    Kadi, Nawar
    University of Borås, Faculty of Textiles, Engineering and Business. Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190 Borås, Sweden.
    Haapala, Antti
    School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, FI-80101 Joensuu, Finland;FSCN Research Centre, Mid Sweden University, SE-85170 Sundsvall, Sweden.
    Mechanical and Thermal Properties of Wood-Fiber-Based All-Cellulose Composites and Cellulose-Polypropylene Biocomposites2023In: Polymers, E-ISSN 2073-4360, Vol. 15, no 3, article id 475Article in journal (Refereed)
    Abstract [en]

    This article explores wood-fiber-based fabrics containing Lyocell yarn in the warp and Spinnova–Lyocell (60%/40%) yarn in the weft, which are used to form unidirectional all-cellulose composites (ACC) through partial dilution in a NaOH–urea solution. The aim is to investigate the role of the yarn orientation in composites, which was conducted by measuring the tensile properties in both the 0° and 90° directions. As a reference, thermoplastic biocomposites were prepared from the same fabrics, with biobased polypropylene (PP) as the matrix. We also compared the mechanical and thermal properties of the ACC and PP biocomposites. The following experiments were carried out: tensile test, TGA, DSC, DMA, water absorption test and SEM. The study found no significant difference in tensile strength regarding the Spinnova–Lyocell orientation between ACC and PP biocomposites, while the composite tensile strength was clearly higher in the warp (Lyocell) direction for both composite variants. Elongation at break doubled in ACC in the Lyocell direction compared with the other samples. Thermal analysis showed that mass reduction started at a lower temperature for ACC, but the thermal stability was higher compared with the PP biocomposites. Maximum thermal degradation temperature was measured as being 352 °C for ACC and 466 °C for neat PP, and the PP biocomposites had two peaks in the same temperature range (340–474 °C) as ACC and neat PP combined. ACCs absorbed 93% of their own dry weight in water in just one hour, whereas the PP biocomposites BC2 and BC4 absorbed only 10% and 6%, respectively. The study highlights the different properties of ACC and PP reference biocomposites that could lead to further development and research of commercial applications for ACC.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf