Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adekunle, K.
    et al.
    University of Borås, School of Engineering.
    Cho, S.-W.
    University of Borås, School of Engineering.
    Ketzscher, R.
    Skrifvars, M.
    University of Borås, School of Engineering.
    Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications2012In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 124, no 6, p. 4530-4541Article in journal (Refereed)
    Abstract [en]

    Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non-woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid-plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy.

  • 2.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Patzelt, Christian
    Kalantar, Adib
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Mechanical and Viscoelastic Properties of Soybean Oil Thermoset Reinforced with Jute Fabrics and Carded Lyocell Fiber2011In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 122, no 5, p. 2855-2863Article in journal (Refereed)
    Abstract [en]

    Composites and hybrid composites were manufactured from renewable materials based on jute fibers, regenerated cellulose fibers (Lyocell), and thermosetting polymer from soybean oil. Three different types of jute fabrics with biaxial weave architecture but different surface weights, and carded Lyocell fiber were used as reinforcements. Hybrid composites were also manufactured by combining the jute reinforcements with the Lyocell. The Lyocell composite was found to have better mechanical properties than other composites. It has tensile strength and modulus of about 144 MPa and 18 GPa, respectively. The jute composites also have relatively good mechanical properties, as their tensile strengths and moduli were found to be between 65 and 84 MPa, and between 14 and 19 GPa, respectively. The Lyocell-reinforced composite showed the highest flexural strength and modulus, of about 217 MPa and 13 GPa, respectively. In all cases, the hybrid composites in this study showed improved mechanical properties but lower storage modulus. The Lyocell fiber gave the highest impact strength of about 35 kJ/m2, which could be a result of its morphology. Dynamic mechanical analysis showed that the Lyocell reinforced composite has the best viscoelastic properties.

  • 3.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Biobased Composites Prepared by Compression Molding with a Novel Thermoset Resin from Soybean Oil and a Natural-Fiber Reinforcement2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 116, no 3, p. 1759-1765Article in journal (Refereed)
    Abstract [en]

    Biobased composites were manufactured with a compression-molding technique. Novel thermoset resins from soybean oil were used as a matrix, and flax fibers were used as reinforcements. The air-laid fibers were stacked randomly, the woven fabrics were stacked crosswise (0/90 ), and impregnation was performed manually. The fiber/resin ratio was 60 : 40. The prepared biobased composites were characterized by impact and flexural testing. Scanning electron microscopy of knife-cut cross sections of the specimens was also done to investigate the fiber–matrix interface. Thermogravimetric analysis of the composites was carried out to provide indications of thermal stability. Three resins from soybean oil [methacrylated soybean oil, methacrylic anhydride modified soybean oil (MMSO), and acetic anhydride modified soybean oil] were used as matrices. The impact strength of the composites with MMSO resin reinforced with air-laid flax fibers was 24 kJ/m2, whereas that of the MMSO resin reinforced with woven flax fabric was between 24 and 29 kJ/m2. The flexural strength of the MMSO resin reinforced with air-laid flax fibers was between 83 and 118 MPa, and the flexural modulus was between 4 and 6 GPa, whereas the flexural strength of the MMSO resin reinforced with woven fabric was between 90 and 110 MPa, and the flexural modulus was between 4.87 and 6.1 GPa.

  • 4.
    Adekunle, Kayode
    et al.
    University of Borås, School of Engineering.
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Synthesis of reactive soybean oils for use as a biobased thermoset resins in structural natural fiber composites2009In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 115, no 6, p. 3137-3145Article in journal (Refereed)
    Abstract [en]

    Biobased thermosets resins were synthesized by functionalizing the triglycerides of epoxidized soybean oil with methacrylic acid, acetyl anhydride, and methacrylic anhydride. The obtained resins were characterized with FTIR, 1H-NMR, and 13C-NMR spectroscopy to confirm the functionalization reactions and the extent of epoxy conversion. The viscosities of the methacrylated soybean oil resins were also measured for the purpose of being used as a matrix in composite applications. The cross-linking capability was estimated by UV and thermally initiated curing experiments, and by DSC analysis regarding the degree of crosslinking. The modifications were successful because up to 97% conversion of epoxy group were achieved leaving only 2.2% of unreacted epoxy groups, which was confirmed by 1H-NMR. The 13C-NMR confirms the ratio of acetate to methacrylate methyl group to be 1 : 1. The viscosities of the methacrylated soybean oil (MSO) and methacrylic anhydride modified soybean oil (MMSO) were 0.2 and 0.48 Pas, respectively, which indicates that they can be used in resin transfer molding process.

  • 5.
    Bashir, Tariq
    et al.
    University of Borås, School of Engineering.
    Fast, Lars
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Persson, Nils-Krister
    University of Borås, Swedish School of Textiles.
    Electrical Resistance Measurement Methods and Electrical Characterization of Poly(3,4-ethylenedioxythiophene)- Coated Conductive Fibers2012In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 124, no 4, p. 2954-2961Article in journal (Refereed)
    Abstract [en]

    Textile fibers and yarns of high conductivity, and their integration into wearable textiles for different electronic applications, have become an important research field for many research groups throughout the world. We have produced novel electrically conductive textile yarns by vapor-phase polymerization (VPP) of a conjugated polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), on the surface of commercially available textile yarns (viscose). In this article, we have presented a novel setup for electrical resistance measurements, which can be used not only for fibrous structures but also for woven structures of specific dimensions. We have reported a two-point resistance- measuring method using an already manufactured setup and also a comparison with the conventionally used method (so-called crocodile clip method). We found that the electrical properties of PEDOT-coated viscose fibers strongly depend on the concentration of oxidant (FeCl3)and the doping (oxidation) process of PEDOT. To evaluate the results, we used mass specific resistance values of PEDOT-coated viscose yarns instead of normal surface resistance values. The voltage–current (V–I) characteristics support the ohmic behavior of coated fibers to some extent. Monitoring of the charging effect of the flow of current through conductive fibers for prolonged periods of time showed that conductivity remains constant. The change in electrical resistance values with increase in the length of coated fibers was also reported. The resistance measuring setup employed could also be used for continuous measurement of resistance in the production of conductive fibers, as well as for four-point resistance measurement.

  • 6.
    Cho, Sung-Woo
    et al.
    University of Borås, School of Engineering.
    Gällstedt, Mikael
    Hedenqvist, Mikael S.
    Effects of glycerol content and film thickness on the properties of vital wheat gluten films cast at pH 4 and 112010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 117, no 6, p. 3506-3514Article in journal (Refereed)
    Abstract [en]

    This study deals with the optical properties and plasticizer migration properties of vital wheat gluten (WG) films cast at pH 4 and 11. The films contained initially 8, 16, and 25 wt.% glycerol and were aged at 23 °C and 50% relative humidity for at least 17 weeks on a paper support to simulate a situation where a paper packaging is laminated with an oxygen barrier film of WG. The films, having target thicknesses of 50 and 250 μm, were characterized visually and with ultraviolet/visible and infrared spectroscopy; the mass loss was measured by gravimetry or by a glycerol-specific gas chromatography method. The thin films produced at pH 4 were, in general, more heterogeneous than those produced at pH 11. The thin pH 4 films consisted of transparent regions surrounding beige glycerol-rich regions, the former probably rich in gliadin and the latter rich in glutenin. This, together with less Maillard browning, meant that the thin pH 4 films, in contrast to the more homogeneous (beige) thin pH 11 films, showed good contact clarity. The variations in glycerol content did not significantly change the optical properties of the films. All the films showed a significant loss of glycerol to the paper support but, after almost 9 months, the thick pH 11 film containing initially 25 wt.% glycerol was still very flexible and, despite a better contact to the paper, had a higher residual glycerol content than the pH 4 film, which was also more brittle.

  • 7. Ding, Xiangyu
    et al.
    Liu, Hewen
    Shi, Wenfang
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Form-fill-seal methodology for controlled encapsulation of small silver particles in hyperbranched polygycidol2009In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 112, no 3, p. 1209-1214Article in journal (Refereed)
  • 8.
    Esmaeili, Nima
    et al.
    University of Bolton.
    Jahandideh, Arash
    South Dakota State University.
    Muthukumarappan, Kasiviswanathan
    South Dakota State University.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Synthesis and characterization of methacrylated star-shaped poly(lactic acid) emplying core moilecules with different hydroxyl groups2017In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 134, no 39, article id 45341Article in journal (Refereed)
    Abstract [en]

    A set of novel bio-based star-shaped thermoset resins was synthesized via ring-opening polymerization of lactide and employing different multi-hydroxyl core molecules, including ethylene glycol, glycerol, and erythritol. The branches were end-functionalized with methacrylic anhydride. The effect of the core molecule on the melt viscosity, the curing behavior of the thermosets and also, the thermomechanical properties of the cured resins were investigated. Resins were characterized by Fourier-transform infrared spectroscopy, 13C-NMR, and 1H-NMR to confirm the chemical structure. Rheological analysis and differential scanning calorimetry analysis were performed to obtain the melt viscosity and the curing behavior of the studied star-shaped resins. Thermomechanical properties of the cured resins were also measured by dynamic mechanical analysis. The erythritol-based resin had superior thermomechanical properties compared to the other resins and also, lower melt viscosity compared to the glycerol-based resin. These are of desired characteristics for a resin, intended to be used as a matrix for the structural composites. Thermomechanical properties of the cured resins were also compared to a commercial unsaturated polyester resin and the experimental results indicated that erythritol-based resin with 82% bio-based content has superior thermomechanical properties, compared to the commercial polyester resin. Results of this study indicated that although core molecule with higher number of hydroxyl groups results in resins with better thermomechanical properties, number of hydroxyl groups is not the only governing factor for average molecular weight and melt viscosity of the uncured S-LA resins.

  • 9. Fatarella, Enrico
    et al.
    Mylläri, Ville
    Ruzzante, Marco
    Pogni, Rathish
    Baratto, Maria
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Syrjälä, Seppo
    Järvelä, Pentti
    Sulfonated polyetheretherketone/polypropylene polymer blends for the production of photoactive materials2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 132, no 8Article in journal (Refereed)
    Abstract [en]

    Sulfonated polyetheretherketone (SPEEK) was synthesized via a mono-substitution reaction of PEEK in concentrated sulphuric acid and was blended with polypropylene (PP) in 2–10%w/w concentration to be used for the production of photoactive thermoplastic products. SPEEK and SPEEK/PP blends were characterized using FTIR, DSC, TGA, NMR, rheology, SEM, and EPR. Under UV-Vis irradiation, stable benzophenone ketyl (BPK) radicals were generated by hydrogen extraction from PP. By increasing the amount of SPEEK in the polymer blend a linear increase in the BPK radicals was achieved according to the EPR data. DSC and TGA tests indicated weaknesses in the thermal stability of SPEEK but according to the rheological tests this should not have a major effect on processabililty. The optimal amount of SPEEK in the blend was obtained at 5%w/w. This concentration provided a good compromise between radical concentration, material processability, and cost

  • 10.
    Fatarella, Enrico
    et al.
    Next Technology Tecnotessile Società Nazionale di Ricerca s.r.l.
    Mylläri, Ville
    Tampere University of Technology.
    Ruzzante, Marco
    Next Technology Tecnotessile Società Nazionale di Ricerca s.r.l.
    Pogni, Rebecca
    Department of Biotechnology, Chemistry and Pharmacy, University of Siena.
    Baratto, Maria
    Department of Biotechnology, Chemistry and Pharmacy, University of Siena.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Syrjälä, Seppo
    Tampere University of Technology.
    Järvelä, Pentti
    Tampere University of Technology.
    Sulfonated polyetheretherketone/polypropylene polymer blends for the production of photoactive materials2015In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 132, no 8Article in journal (Refereed)
  • 11.
    Hashemi Sanatgar, Razieh
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Cayla, Aurelie
    Campagne, Christine
    Nierstrasz, Vincent
    University of Borås, Faculty of Textiles, Engineering and Business.
    Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing2018In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 136, no 6, p. 1044-1053Article in journal (Refereed)
    Abstract [en]

    3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, both the nanocomposites and 3D printing communities need to make more collaborations and innovations for developing and processing of new polymers and composites to get benefit of functionalities of 3D printed nanocomposites. The contribution of this paper is the creation of 3D printable filaments from conductive polymer nanocomposites using a melt mixing process. Multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) were incorporated into polylactic acid. The percolation threshold of MWNT composites is 0.54 wt.% and of KB composites is 1.7 wt.% by four-point resistance measurement method. In the similar melt mixing process, there was no dependence of diameter of produced 3D printer filaments on the MWNT loading, instead the diameter was dependent on the KB loading and increased with increasing the filler amount. The conductivity of extruded filaments from 3D printer in low filler contents decreases with increasing extruder temperature, yet in higher filler contents there is no effect of extruder temperature on conductivity. Finally, the resistance decreases exponentially with the increase of cross sectional area of 3D printed tracks.

  • 12.
    Jabbari, Mostafa
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Åkesson, Dan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Introducing all-polyamide composite coated fabrics: A method to produce fully recyclable single-polymer composite coated fabrics2016In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 133, no 7Article in journal (Refereed)
    Abstract [en]

    Novel all-polyamide composite (APC) has been developed to replace traditional coated fabrics with good interfacial adhesionand enhanced recyclability. The composite is fully recyclable since it contains no other materials except polyamide. APC was preparedby partially dissolving a polyamide fabric by treatment with a film-forming polyamide solution. The effect of the polyamidesolution concentration and gelling time on tensile and viscoelastic properties of APCs was investigated to explore the optimum processingparameters for balancing the good interfacial adhesion. The composite properties were studied by dynamic mechanical thermalanalysis (DMTA), tensile testing and scanning electron microscopy (SEM). The results showed a good adhesion between the coatingand the fabric. A new method was introduced to convert a low value added textile waste to a high value-added product. The compositeis tunable, in terms of having a dense or a porous top-layer depending on the end-use requirements.

  • 13.
    Kalantar Mehrjerdi, Adib
    et al.
    University of Borås, School of Engineering.
    Abebe Mengistu, Bemnet
    Åkesson, Dan
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Effects of a titanate coupling agent on the mechanical and thermo-physical properties of talc-reinforced polyethylene compounds2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 13, p. 40449-40449Article in journal (Refereed)
    Abstract [en]

    An experimental study was carried out to investigate the effects of a titanate coupling agent on the mechanical properties, moisture absorption, and thermal conductivity of talc-filled high-density polyethylene (HDPE). Talc (0–35 wt %) was used as reinforcement particulate filler in an HDPE matrix and samples were prepared in a micro-compounder and an injection molding machine. Isopropyl tri(dioctyl)phosphate titanate (0.5 wt %) was used as coupling agent. Composites with and without coupling agent were evaluated for changes in mechanical and thermo-physical properties, morphology, and void content. Addition of the titanate coupling agent most often resulted in an increase in stiffness and tensile strength. Furthermore, both the void content and the elongation at break of composites were reduced. Results also showed that the coupling agent had no effects on the thermal conductivity, thermal diffusivity, and specific heat capacity of the composites. In addition, it was observed that the coupling agent was more effective at low concentrations of filler. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40449.

  • 14.
    Kalantar Mehrjerdi, Adib
    et al.
    University of Borås, School of Engineering.
    Adl-Zarrabi, Bijan
    Cho, Sung-Woo
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Mechanical and thermo-physical properties of high-density polyethylene modified with talc2013In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 129, no 4, p. 2128-2138Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to examine the physical, mechanical, and thermo-physical properties of high-density polyethylene (HDPE) modified with talc. Different weight fractions of talc (up to 35 wt %) were compounded with an HDPE matrix containing 2.5 wt % of carbon black (CB) in a twin-screw compounder. The composites were then processed by injection moulding to obtain specimens for testing. The results indicate that CB causes a significant decrease in the toughness, while talc not only enhances the thermal conductivity and thermo-physical properties of the composites but can also play a role in compensating for the negative effects of CB on impact resistance. The experimental data show that the presence of CB reduces the impact resistance of HDPE by up to 34%, while addition of up to 8 wt % talc can return this value to close to that of pure HDPE. No significant effect on the composite tensile yield and fracture strength was observed for either component at all concentrations. The thermal conductivity, thermal diffusivity, and specific density values of the composites increased almost linearly, but the increase in moisture absorption in the long term showed nonlinear behavior in the concentration range of the experiment.

  • 15.
    Kumar Ramamoorthy, Sunil
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rajan, Rathish
    Tampere University of Technology.
    Rainosalo, Egidija
    Centria University of Applied Sciences.
    Thomas, Selvin
    Yanbu Industrial College and Advanced Materials Laboratory.
    Zavasnik, Janez
    Jožef Stefan Institute.
    Vuorinen, Jyrki
    Tampere University of Technology.
    Mechanical, thermal, and burning properties of viscose fabric composites: Influence of epoxy resin modification2018In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 135, no 36Article in journal (Refereed)
    Abstract [en]

    The influence of epoxy resin modification by 3-aminopropyltriethoxysilane (APTES) on various properties of warp knitted viscose fabric is reported in this study. Dynamic mechanical, impact resistance, flexural, thermal properties, and burning behavior of the epoxy/viscose fabric composites are studied with respect to varying content of silane coupling agent. The results obtained forAPTES-modified epoxy resin based composites reinforced with unmodified viscose fabric composites are compared to unmodified epoxy resin based composites reinforced with APTES-modified viscose fabric. The dynamic mechanical behavior of the APTES-modified resin based composites indicates improved interfacial adhesion. The composites prepared from modified epoxy resin exhibited a twofold increase in impact resistance. The improved adhesion between the fiber and modified resin was also visible from the scanning electron microscope analysis of the impact fracture surface. There was less influence of resin modification on the flexural properties of the composites. The 5% APTES modification induced early degradation of composites compared to all other compo-sites. The burning rate of all the composites under study is rated to be satisfactory for use in automotive interior applications.

  • 16.
    Lund, Anja
    et al.
    University of Borås, Swedish School of Textiles.
    Hagström, Bengt
    Melt spinning of beta-phase poly(vinylidene fluoride) yarns with and without a conductive core2011In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 120, no 2, p. 1080-1089Article in journal (Refereed)
    Abstract [en]

    For the use of poly(vinylidene fluoride) (PVDF) as a piezoelectric material, the processing must include formation of polar β-phase crystallites, as well as the application of electrically conducting charge collectors, i.e. electrodes. In the present paper, results from melt spinning of PVDF yarns and a novel bicomponent PVDF-yarn with a conductive carbon black/polypropylene (CB/PP) core, are presented. Melt spinning has been done under conditions typical for industrial large-scale fiber production. The effects of varying spinning velocities, draw rates and draw temperatures on the resulting crystalline structure are discussed. The results show that for maximum α-to-β phase transformation, cold drawing should take place at a temperature between 70-90°C and draw ratio as well as draw rate should be as high as possible. It was observed that the cold drawing necessary to form β-phase crystallinity, simultaneously leads to a decrease in the core conductivity of the bicomponent yarns. In the present work, melt spinning of bicomponent fibers with high β-phase PVDF in the sheath and a CB/PP core was successfully realized. The core material remained electrically conductive, this paving the way to using a CB-polymer compound as inner electrode in melt spinning of piezoelectric bicomponent fibers.

  • 17.
    Lund, Anja
    et al.
    University of Borås, Swedish School of Textiles.
    Hagström, Bengt
    Melt spinning of beta-phase poly(vinylidene fluoride) yarns with and without a conductive core2011In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 120, no 2, p. 1080-1089Article in journal (Refereed)
    Abstract [en]

    When poly(vinylidene fluoride) (PVDF) is to be used as a piezoelectric material, the processing must include the formation of polar β-phase crystallites, as well as the application of electrically conducting charge collectors, that is, electrodes. In this article, results from the melt spinning of PVDF yarns and a novel bicomponent PVDF-yarn with a conductive carbon black/polypropylene (CB/PP) core are presented. Melt spinning has been done under conditions typical for industrial large-scale fiber production. The effects on the resulting crystalline structure of varying the spinning velocity, draw rate, and draw temperature are discussed. The results show that, for maximum α-to-β phase transformation, cold drawing should take place at a temperature between 70 and 90°C, and both the draw ratio and the draw rate should be as high as possible. It was observed that the cold drawing necessary to form β-phase crystallinity simultaneously leads to a decrease in the core conductivity of the bicomponent yarns. In this work, the melt spinning of bicomponent fibers with high-β-phase PVDF in the sheath and a CB/PP core was successfully accomplished. The core material remained electrically conductive, paving the way for the use of a CB-polymer compound as inner electrode in the melt spinning of piezoelectric bicomponent fibers.

  • 18.
    Lund, Anja
    et al.
    University of Borås, Swedish School of Textiles.
    Jonasson, Christian
    Johansson, Christer
    Haagensen, Daniel
    Hagström, Bengt
    Piezoelectric polymeric bicomponent fibers produced by melt spinning2012In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 126, no 2, p. 490-500Article in journal (Refereed)
    Abstract [en]

    Melt spinning of a novel piezoelectric bicomponent fiber, with poly(vinylidene fluoride) as the electroactive sheath component, has been demonstrated. An electrically conductive compound of carbon black (CB) and high density polyethylene was used as core material, working as an inner electrode. A force sensor consisting of a number of fibers embedded in a soft CB/polyolefin elastomer matrix was manufactured for characterization. The fibers showed a clear piezoelectric effect, with a voltage output (peak-to-peak) of up to 40 mV under lateral compression. This continuous all-polymer piezoelectric fiber introduces new possibilities toward minimal single fiber sensors as well as large area sensors produced in standard industrial weaving machines.

  • 19. Mahboubi Soufiani, Arman
    et al.
    Salehi, Massoud
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Persson, Maria
    Cho, Sung-Woo
    Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 20Article in journal (Refereed)
    Abstract [en]

    Novel composite films constituted of poly(lactic acid) (PLA), hydroxyapatite (HAp), and two types of regenerated cellulose fillers—particulate and fibrous type—were produced by melt extrusion in a twin-screw micro-compounder. The effect of the film composition on the tensile and dynamic mechanical behavior and the HAp dispersion in the PLA matrix were investigated thoroughly. Appearance of crazed regions and prevention of HAp aggregation in the PLA matrix were elucidated in the composites with up to 15 wt % particulate cellulose content, which was the main reason for only slight reduction in the tensile properties, and consequently trivial degradation of their pre-failure energy absorption as compared to neat PLA films. Superior dynamical energy storage capacities were obtained for the particulate cellulose modified composites, while their fibrous counterparts had not as good properties. Additionally, the anisotropic mechanical behavior obtained for the extruded composites should be favorable for use as biomaterials aimed at bone tissue engineering applications.

  • 20.
    Mylläri, Ville
    et al.
    Tampere University of Technology.
    Fatarella, Enrico
    Next Technology Tecnotessile Società Nazionale di Ricerca s.r.l.
    Ruzzante, Marco
    Next Technology Tecnotessile Società Nazionale di Ricerca s.r.l.
    Pogni, Rebecca
    Department of Biotechnology, Chemistry and Pharmacy, University of Siena.
    Barratto, Maria
    Department of Biotechnology, Chemistry and Pharmacy, University of Siena.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Syrjälä, Seppo
    Tampere University of Technology.
    Järvelä, Pentti
    Tampere University of Technology.
    Production of sulfonated polyetheretherketone/polypropylene fibers for photoactive textiles2015In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 132, no 39Article in journal (Refereed)
    Abstract [en]

    New photocatalytic fibers made of sulfonated polyetheretherketone (SPEEK)/polypropylene (PP) are melt compounded and melt spun, first on laboratory scale and then on a semi-industrial scale. Fiber spinnability is optimized and the fibers are characterized using mechanical testing, electron paramagnetic resonance (EPR) spectroscopy, and scanning electron microscopy (SEM). According to the results, the fiber spinnability remains at a good level up to 10 wt % SPEEK concentration. Optimal processing temperature is 200°C due to the thermal degradation at higher temperatures. EPR measurements show good and long-lasting photoactivity after the initial irradiation but also decay in the radical intensity during several irradiation cycles. Mechanical tenacity of the SPEEK/PP 5:95 fiber is approximately 20% lower than for otherwise similar PP fiber. The fiber is a potential alternative to compete against TiO2-based products but more research needs to be done to verify the real-life performance.

  • 21. Rajan, R.
    et al.
    Sreekumar, P.A.
    Joseph, K.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites2012In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 124, no 4, p. 3357-3362Article in journal (Refereed)
    Abstract [en]

    The article reports the results of studies on the effect of chitosan (0, 5, 10, 20, 30, and 40 wt %) on thermal and mechanical properties of poly(hydroxybutyrate) composites. The addition of chitosan causes an increase in the glass transition temperature (Tg) while a decrease in the enthalpy of fusion (DHfus), crystallization (DHcry) and percentage of crystallinity as determined by differential scanning calorimeter (DSC). The thermogravimetric analysis reveals that high amount of chitosan decreases the thermal stability of the composites. The Young’s modulus of the composite increases and is high for the composite having 40 wt % of chitosan. Increase in the amount of chitosan decreases the elongation at break and impact strength of composites. Finally, the Young’s modulus of the composites has been compared with the theoretical predictions.

  • 22.
    Ramamoorthy, Sunil Kumar
    et al.
    University of Borås, School of Engineering.
    Persson, Anders
    University of Borås, Swedish School of Textiles.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Reusing Textile Waste As Reinforcements In Composites2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 17, p. 1-16Article in journal (Refereed)
    Abstract [en]

    Polyester (PET) has wide applications in textile industries as textile fiber and its share continues to grow. Substantial quantities of cotton/polyester blend fabrics are disposed every year due to technical challenges, which pose a big environmental and waste-dumping problem. The aim of this study is to evaluate the potential of discarded cotton/PET fabrics as raw materials for composites. If their inherent reinforcement properties can be used in composites, an ecological footprint issue can be solved. In this study, we investigate three concepts for reuse of cotton/PET fabrics for composites: compression molding above the Tm of PETs, use of a matrix derived from renewable soybean oil, use of thermoplastic copolyester/polyester bi-component fibers as matrix. All three concepts have been explored to make them available for wider applications. The effects of processing parameters such as compression temperature, time and pressure are considered in all three cases. The third concept gives the most appealing properties, which combine good tensile properties with toughness; more than four times better tensile strength than the first concept; and 2.2 times better than the second concept.

  • 23.
    Skrifvars, Mikael
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Baghaei, Behnaz
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rissanen, Marja
    Tampere University of Technology.
    Ramamoorthy, Sunil Kumar
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mechanical and thermal characterization of compression moulded polylactic acid natural fiber composites reinforced with hemp and Lyocell fibers2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 15Article in journal (Refereed)
  • 24.
    Soroudi, Azadeh
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    The influence of matrix viscosity on properties of polypropylene/polyaniline composite fibers: Rheological, electrical, and mechanical characteristics2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 119, no 5, p. 2800-2807Article in journal (Refereed)
    Abstract [en]

    Electrically conductive composites containing polypropylene (PP) and polyaniline (PANI) were prepared using PP with three different melt flow rates (MFRs) and a commercial PANI-complex in proportions of 80% by weight and 20%, respectively. Composite blends were melt-spun to fibers under different solid-state draw ratios. Rheological studies of dynamic viscosity, as well as the storage modulus and loss modulus showed that the prepared PANI-complex/PP blends exhibit different dynamic rheological behavior, depending on the PP used. This confirms the blends' morphological differences. PP matrix viscosity was found to play an important role in the electrical properties of the prepared fibers. Fibers prepared using the matrix with the lowest viscosity, showed a larger dispersed phase size in the cross-sectional SEM micrographs, maximum conductivity observed at higher draw ratios and a more linear resistance–voltage relationship than those of the fibers prepared using the higher viscosity matrices.

  • 25.
    Soroudi, Azadeh
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Liu, Hewen
    Polyaniline: polypropylene melt-spun fiber filaments: The collaborative effects of blending conditions and fiber draw ratios on the electrical properties of fiber filaments2011In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 119, no 1, p. 558-564Article in journal (Refereed)
    Abstract [en]

    A melt-processable polyaniline complex was blended with polypropylene under different mixing conditions and melt-spun into fiber filaments under different draw ratios. The conductivity, electrical resistance at different voltages, and morphological characteristics of the prepared fibers were investigated. The morphology of this two-phase blend was demonstrated to have a large effect on the conductivity level and the linearity of the resistance–voltage relationship of the blend fibers. Two factors had substantial effects on the morphology and electrical properties of the fibers. They were the size of the initial dispersed conductive phase, which depended on the melt blending conditions, and the stress applied to orient this phase to a fibril-like morphology, which was controlled by the draw ratio of the fiber. The two factors were shown to be associated with each other to maintain an appropriate balance of fibril formation and breakage and to create continuous conductive pathways.

  • 26.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Fuchs, Torsten
    Stöss, Michael
    Root, Andrew
    MagSol, Helsinki, Finland.
    Stenvall, Erik
    Chalmers tekniska högskola.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Recycling of wood fiber-reinforced HDPE by multiple reprocessing2016In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 133, no 35Article in journal (Refereed)
    Abstract [en]

    The mechanical recycling of high-density polyethylene (HDPE) reinforced with wood fiber was studied by means of repeated injection moulding. The change in properties during the recycling was monitored by tensile and flexural tests, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), FTIR spectroscopy, and by measuring the fiber lengths. Tests were also done where injection moulding was combined with subsequent accelerated thermo-oxidative ageing and thereafter repeated numerous times. The results showed that the HDPE composites were relatively stable toward both the ageing conditions and the repeated injection moulding. The change of the mechanical properties was mainly observed as an increased elongation at max. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43877. © 2016 Wiley Periodicals, Inc.

  • 27.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Seppälä, J.
    Turunen, M.
    Martinelli, M.
    Matic, A.
    Synthesis and characterization of a lactic acid-based thermoset resin suitable for structural composites and coatings2009In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 115, no 1, p. 480-486Article in journal (Refereed)
    Abstract [en]

    A new biobased polyester resin was developed for thermoset composite applications. The resin is potentially inexpensive and can be produced industrially by relatively simple means. The resin consists of star-shaped methacrylated oligomers of lactic acid (LA). LA oligomers were synthesized in a two-step process: in the first step, oligomers of LA were polymerized by direct condensation of LA. In the second step, the oligomers were end-functionalized by methacrylic anhydride. The resin was characterized by differential scanning calorimetry, Raman spectroscopy, NMR, rubber process analyzer, and TOF-SIMS. Tests show that the resin can be crosslinked into a rigid network within a couple of minutes upon thermal initiation. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 480-486, 2010

  • 28.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Seppälä, Jukka
    Turunen, Minna
    Thermoset lactic acid-based resin as a matrix for flax fibers2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 119, no 5, p. 3004-3009Article in journal (Refereed)
    Abstract [en]

    Abstract Thermoset composites were produced from flax fibers and a novel lactic acid (LA)-based thermoset resin. This resin is based on methacrylated, star-shaped oligomers of LA. The main purpose of this work was to evaluate whether this resin can be used to produce structural composites from flax fibers. Composites were prepared by spray impregnation followed by compression molding at elevated temperature. The tests showed that composites can be produced with as much as 70 wt% fiber. The composites were evaluated by tensile testing, flexural testing, charpy impact test, dynamic mechanical thermal analysis (DMTA), and low-vacuum scanning electron microscopy. The ageing properties in high humid conditions were evaluated, the Young's modulus ranged from 3 GPa to 9 GPa in the best case. This work shows that structural composites can be produced from renewable material. It is clear from the results that these composites have properties that make them suitable for furniture, panels, or automotive parts.

  • 29.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Walkenström, P.
    University of Borås, Swedish School of Textiles.
    Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins2009In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 114, no 4, p. 2502-2508Article in journal (Refereed)
    Abstract [en]

    Structural composites with a high content of renewable material were produced from natural fibres and an acrylated epoxidized soybean oil resin. Composites were prepared by spray impregnation followed by compression moulding at elevated temperature. The resulting composites good mechanical properties in terms of tensile strength flexural strength. Tensile testing as well as dynamical :hanical thermal analysis showed that increasing the e content, increased the mechanical properties. The resin be reinforced with up to 70 wt % fibre without sacrifice in processability. The tensile modulus ranged between 5.8 and 9.7 GPa depending on the type of fibre mat. The study of the adhesion by low vacuum scanning electron microscopy shows that the fibres are well impregnated in the matrix. The aging properties were finally evaluated. This study shows that composites with a very high content of renewable constituents can be produced from soy bean oil resins and natural fibres.

1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf