Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Forgács, Gergely
    et al.
    University of Borås, School of Engineering.
    Pourbafrani, Mohammad
    Niklasson, Claes
    Taherzadeh, Mohammad
    University of Borås, School of Engineering.
    Horváth Sárvari, Ilona
    University of Borås, School of Engineering.
    Methane production from citrus wastes: process development and cost estimation2011In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 87, no 2, p. 250-255Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Because of its extreme toxicity for microorganisms, the limonene content of citrus wastes (CWs) has been a major obstacle to the conversion of CWs to biofuels. The main objective of this study was to develop a new process for the utilization of CWs that can be economically feasible when the supply of CW is low. RESULTS: Steam explosion pre-treatment was applied to improve the anaerobic digestibility of CWs, resulting in a decrease of initial limonene concentration by 94.3%. A methane potential of 0.537 ± 0.001 m3 kg−1 VS (volatile solids) was obtained during the following batch digestion of treated CWs, corresponding to an increase of 426% compared with that of the untreated samples. Long-term effects of the treatment were further investigated by a semi-continuous co-digestion process. A methane production of 0.555 ± 0.0159 m3 CH4 kg−1 VS day−1 was achieved when treated CWs (corresponding to 30% of the VS load) were co-digested with municipal solid waste. CONCLUSION: The process developed can easily be applied to an existing biogas plant. The equipment cost for this process is estimated to be one million USD when utilizing 10 000 tons CWs year−1. 8.4 L limonene and 107.4 m3 methane can be produced per ton of fresh citrus wastes in this manner.

  • 2. Mohsenzadeh, A.
    et al.
    Jeihanipour, A.
    Karimi, K.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG for improve of ethanol and biogas production2012In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 87, no 8, p. 1209-1214Article in journal (Refereed)
    Abstract [en]

    Alkali-dissolution pretreatment of softwood spruce and hardwood birch to improve ethanol and biogas production was investigated. The pretreatments were carried out at different temperatures between − 15 and 80 °C with NaOH/thiourea (7/5.5 wt%), NaOH/urea (7/12 wt%), NaOH/urea/thiourea (7/8/6.5 wt%), and NaOH/PEG (7/1 wt%) aqueous solutions. The pretreated materials were then subjected to enzymatic hydrolysis for 72 h. The pretreatments by NaOH/thiourea at − 15 °C improved the hydrolysis yields of spruce from 11.7% to 57% of theoretical yield, and for birch from 23.1% to 83% of theoretical yield. The enzymatic hydrolysis and fermentation of these pretreated materials by NaOH/thiourea with baker's yeast resulted in 54.0% of theoretical yield compared with 10.9% for untreated spruce and 80.9% of theoretical yield compared with 12.9% for untreated birch. Furthermore, anaerobic digestion of pretreated materials resulted in 0.36 L g−1 VS methane compared with 0.23 L g−1 VS for untreated birch, and 0.21 L g−1 VS compared with 0.03 L g−1 VS for untreated spruce.

  • 3.
    Nair, Ramkumar B.
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lundin, Magnus
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using Neurospora intermedia.2016In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660Article in journal (Refereed)
    Abstract [en]

    BACKGROUND : A method is described that uses dil. phosphoric acid for wheat straw pretreatment and subsequent ethanol and fungal biomass prodn. with the edible fungus Neurospora intermedia. Dil. phosphoric acid pretreatment of wheat straw was optimized at a lab. scale, and the results were validated in a biorefinery demonstration plant for the first time. The various conditions for the dil. acid pretreatment include such factors as phosphoric acid concns. (0.5-3.0% w/v), temp. (150-210 °C), and reaction time (5-20 min). RESULTS : The optimal pretreatment conditions were detd. as an acid concn. of 1.75% (w/v) at a temp. of 190 °C for 15 min, based on the max. enzymic digestibility with the min. inhibitor release. The efficiency of enzymic polysaccharide hydrolysis was 36% for untreated straw and 86% for straw pretreated with dil. phosphoric acid. Scale up of the pretreatment at a biorefinery demonstration plant improved the process, with the subsequent efficiency of polysaccharide hydrolysis being 95% of the theor. max. Ethanol fermn. of enzymically hydrolyzed wheat straw using N. intermedia showed an improvement in the ethanol yield from 29% (with untreated straw) to 94% (with dil. phosphoric acid pretreated straw) of the theor. max. CONCLUSION : This study opens up an alternative strategy for the efficient use of wheat straw for the prodn. of ethanol and edible fungal biomass in existing wheat-to-ethanol plants.

  • 4.
    Ylitervo, Päivi
    et al.
    University of Borås, School of Engineering.
    Franzén, Carl Johan
    Taherzadeh, Mohammad
    University of Borås, School of Engineering.
    Mechanically robust polysiloxane: ACA capsules for prolonged ethanol production2013In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 88, no 6, p. 1080-1088Article in journal (Refereed)
    Abstract [en]

    Fermentation using encapsulated yeast leads to more robust ethanol production from lignocellulose hydrolyzates. Encapsulated yeast is much more tolerant to inhibitors present in hydrolyzates, and fermentation is faster due to increased total cell density. For industrial applications, capsules must be made robust enough to endure long periods and numerous cultivations without breaking. Liquid core alginate–chitosan–alginate (ACA) capsules containing Saccharomyces cerevisiae were produced by the liquid-droplet-forming method and treated with hydrolyzed 3-aminopropyltrietoxysilane (hAPTES) forming very glossy capsules. Capsules produced with 3.0% hAPTES showed the best mechanical robustness but no ethanol could be produced in dilute-acid spruce hydrolyzate using these capsules. Untreated ACA capsules gave the highest ethanol production but demonstrated poor mechanical robustness. 25% of the ACA capsules ruptured within 6 h in the shear test. Capsules treated with 1.5% hAPTES were significantly stronger, since only 0–2% of these capsules broke. Moreover, the ethanol production in the fifth consecutive cultivation in lignocellulose hydrolyzate was nearly as high as for untreated ACA capsules. The mechanical robustness of ACA capsules can be easily improved by treating the capsules with hAPTES. ACA capsules treated with 1.5% hAPTES showed excellent mechanical robustness and a similar ethanol production profile to untreated ACA capsules. © 2012 Society of Chemical Industry

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf