Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Tian, Bo-Xue
    et al.
    Erdtman, Edvin
    University of Borås, School of Engineering.
    Eriksson, Leif A.
    Catalytic Mechanism of Porphobilinogen Synthase: The Chemical Step Revisited by QM/MM Calculations2012In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 116, no 40, p. 12105-12112Article in journal (Refereed)
    Abstract [en]

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation and cyclization of two 5-aminolevulinic acid (5-ALA) substrate molecules to give porphobilinogen (PBG). The chemical step of PBGS is herein revisited using QM/MM (ONIOM) calculations. Two different protonation states and several different mechanisms are considered. Previous mechanisms based on DFT-only calculations are shown unlikely to occur. According to these new calculations, the deprotonation step rather than ring closure is rate-limiting. Both the C–C bond formation first mechanism and the C–N bond formation first mechanism are possible, depending on how the A-site ALA binds to the enzyme. We furthermore propose that future work should focus on the substrate binding step rather than the enzymatic mechanism.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf