Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Moradian, Farzad
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    A. Tchoffor, Placid
    SP Technical Research Institute of Sweden.
    O. Davidsson, Kent
    SP Technical Research Institute of Sweden.
    Pettersson, Anita
    University of Borås, Faculty of Textiles, Engineering and Business.
    Backman, Rainer
    Umeå University.
    Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues2016In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 154Article in journal (Refereed)
    Abstract [en]

    Dual fluidized-bed (DFB) gasification is one of the recently developed technologies for production of heat, power, transportation fuels and synthetic chemicals through steam gasification of biomass. Bed agglomeration is a serious ash-related problem that should be taken into account when biomass-based fuels are selected for fluidized-bed gasification and combustion. This study developed a thermodynamic equilibrium model to assess the risk of bed agglomeration in gasification and combustion reactors of a DFB gasifier using biomass (forest residues) as feedstock. The modelling approach combined thermodynamic equilibrium calculations with chemical fractionation technique to predict the composition and melting behaviour of the fuel-derived ash as well as bed particles coating layer in the gasification and combustion reactors. FactSage was employed for the thermodynamic equilibrium calculations. The modelling results were then compared with experimental data obtained from a full-scale DFB gasifier to estimate the reliability and validity of the predictive model. In general, a good agreement was found between the modelling results and experimental observations. For the forest residues as feedstock and olivine as bed material, the modelling results indicate a low risk of bed agglomeration in the DFB gasifier, as long as the dominant temperature in the combustion zone is below 1020 °C. In contrast, quartz as bed material in the DFB gasifier was shown to significantly increase the risk of bed agglomeration through coating-induced agglomeration mechanism. © 2016 Elsevier B.V.

  • 2.
    Pettersson, Anita
    et al.
    University of Borås, School of Engineering.
    Niklasson, Fredrik
    Moradian, Farzad
    University of Borås, School of Engineering.
    Reduced bed temperature in a commercial waste to energy boiler: Impact on ash and deposit formation2013In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 105, p. 28-36Article in journal (Refereed)
    Abstract [en]

    Waste combustion for power production is associated with many problems due to the composition and inhomogeneity of the fuel stream. A reduction of alkaline and chlorine products in the superheater region should ease these problems significantly. Ashes and deposits from different combustion tests in a commercial 20 MWth bubbling fluidised bed (BFB) boiler were characterised by XRD and SEM-EDX. The fuel combusted was a mix of sorted municipal solid waste (MSW) and industrial waste, often referred to as RDF (refuse derived duel). These waste fuels often contain more alkali and chlorine than does biomass and are therefore considered risky fuels prone to causing bed agglomeration, deposit formation, and corrosion. The aim of this study was to investigate whether a lowered bed temperature could change alkali and chlorine distribution in the boiler to reduce corrosion and deposit formation. The boiler used was designed for a bed temperature in the range of 850–900 °C, which in this investigation was decreased by approximately 150 °C. Data were collected through deposit measurements and solid sampling. The lowered bed temperature resulted in reduced demand for fresh sand, decreased agglomeration, and reduced rates of deposit formation.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf