Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aslanzadeh, Solmaz
    et al.
    University of Borås, School of Engineering.
    Berg, Andreas
    Taherzadeh, Mohammad J.
    University of Borås, School of Engineering.
    Sárvári Horváth, Ilona
    University of Borås, School of Engineering.
    Biogas Production from N-Methylmorpholine-N-oxide (NMMO) Pretreated Forest Residues2014In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 172, no 6, p. 2998-3008Article in journal (Refereed)
    Abstract [en]

    Lignocellulosic biomass represents a great potential for biogas production. However, a suitable pretreatment is needed to improve their digestibility. This study investigates the effects of an organic solvent, N-Methylmorpholine-N-oxide (NMMO) at temperatures of 120 and 90 °C, NMMO concentrations of 75 and 85 % and treatment times of 3 and 15 h on the methane yield. The long-term effects of the treatment were determined by a semicontinuous experiment. The best results were obtained using 75 % NMMO at 120 °C for 15 h, resulting in 141 % increase in the methane production. These conditions led to a decrease by 9 % and an increase by 8 % in the lignin and in the carbohydrate content, respectively. During the continuous digestion experiments, a specific biogas production rate of 92 NmL/gVS/day was achieved while the corresponding rate from the untreated sample was 53 NmL/gVS/day. The operation conditions were set at 4.4 gVS/L/day organic loading rate (OLR) and hydraulic retention time (HRT) of 20 days in both cases. NMMO pretreatment has substantially improved the digestibility of forest residues. The present study shows the possibilities of this pretreatment method; however, an economic and technical assessment of its industrial use needs to be performed in the future.

  • 2.
    Forgacs, G.
    et al.
    University of Borås, School of Engineering.
    Lundin, M.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Sárvári Horváth, Ilona
    University of Borås, School of Engineering.
    Pretreatment of chicken feather waste for improved biogas production2013In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 169, no 7, p. 2016-2028Article in journal (Refereed)
    Abstract [en]

    This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53–2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm3/kg VSadded, which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11–50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH4 yield of 0.485 Nm3/kg VS−1 d−1 was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.

  • 3.
    Gmoser, Rebecca
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ferreira, Jorge
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Post-treatment of Fungal Biomass to Enhance Pigment Production2019In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291Article in journal (Refereed)
    Abstract [en]

    A new post-treatment method of fungal biomass after fermentation is revealed. The post-treatment strategy was utilized to produce pigments as an additional valuable metabolite. Post-treatment included incubation at 95% relative humidity where the effects of harvesting time, light, and temperature were studied. Pigment-producing edible filamentous fungus Neurospora intermedia cultivated on ethanol plant residuals produced 4 g/L ethanol and 5 g/L fungal biomass. Harvesting the pale biomass after 48 h submerged cultivation compared to 24 h or 72 h increased pigmentation in the post-treatment step with 35% and 48%, respectively. The highest pigment content produced, 1.4 mg/g dry fungal biomass, was obtained from washed biomass treated in light at 35 °C whereof the major impact on pigmentation was from washed biomass. Moreover, post-treated biomass contained 50% (w/w) crude protein. The post-treatment strategy successfully adds pigments to pre-obtained biomass. The pigmented fungal biomass can be considered for animal feed applications for domestic animals.

  • 4.
    Nair, Ramkumar B
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Kabir, Maryam M.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sárvári Horváth, Ilona
    University of Borås, Faculty of Textiles, Engineering and Business.
    Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw2017In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, p. 1-15Article in journal (Refereed)
    Abstract [en]

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. .[on SciFinder (R)]

  • 5.
    Patinvoh, Regina
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Feuk-Lagerstedt, Elisabeth
    Lundin, Magnus
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sárvári Horváth, Ilona
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Biological pretreatment of chicken feather and biogas production from total broth2016In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 180, no 7, p. 1401-1415Article in journal (Refereed)
  • 6. Patinvoh, Regina J.
    et al.
    Feuk-Lagerstedt, Elisabeth
    Lundin, Magnus
    Sarvari, Horvath Ilona
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth2016In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291Article in journal (Refereed)
    Abstract [en]

    Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2-8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.[on SciFinder (R)]

  • 7.
    Taherzadeh, Mohammad J
    et al.
    Dept. of Chemical Reaction Eng., Chalmers University of Technology.
    Millati, R.
    Dept. of Chemical Reaction Eng., Chalmers University of Technology.
    Niklasson, C.
    Dept. of Chemical Reaction Eng., Chalmers University of Technology.
    Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae2001In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 95, no 1, p. 45-57Article in journal (Refereed)
    Abstract [en]

    The continuous cultivation of immobilized Saccharomyces cerevisiae CBS 8066 on dilute-acid hydrolysates of forest residuals was investigated. The yeast cells were immobilized in 2-4% Ca-alginate beads. The 2% beads were not stable. However, the 3 and 4% beads were stable for at least 3 wk when an extra resource of calcium ions was available in the medium. The continuous cultivation of a dilute-acid hydrolysate by the immobilized cells at dilution rates of 0.3, 0.5, and 0.6 h-1 resulted in 86, 83, and 79% sugar consumption, respectively, and an ethanol yield between 0.45 and 0.48 g/g. The hydrolysate was fermentable at a dilution rate of 0.1 h-1 in a free-cell system but washed out at a dilution rate of 0.2 h-1 The continuous cultivation of a more inhibiting hydrolysate was not successful by either free- or immobilized-cell systems even at a low dilution rate of 0.07 h-1. However, when the hydrolysate was overlimed, it was fermentable by the immobilized cells at a dilution rate of 0.2 h-1.

  • 8.
    Wikandari, Rachma
    et al.
    University of Borås, School of Engineering.
    Millati, R.
    Lennartsson, P.
    University of Borås, School of Engineering.
    Harmayani, E.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Isolation and Characterization of Zygomycetes Fungi from Tempe for Ethanol Production and Biomass Applications2012In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 167, no 6, p. 1501-1512Article in journal (Refereed)
    Abstract [en]

    Mixed fungal cultures used for making tempe, a fermented soy bean food, were screened for biomass conversion. Thirty-two zygomycetes strains from two tempe cultures were isolated and identified as Rhizopus, Mucor, Rhizomucor, and Absidia species based upon morphology. The dry weight biomass of these strains contained 49% to 63% protein and 10-24% chitosan. The strains with the best growth performance were selected and registered at Culture Collection of Gothenburg University as Rhizomucor CCUG 61146 and Rhizomucor CCUG 61147. These strains were able to grow both aerobically and micro-aerobically. Their ethanol yields were 0.38-0.47, 0.19-0.22, and 0.31-0.38 g/g on glucose, xylose, and a mix sugars consisting of cellobiose, glucose, xylose, arabinose, galactose, and mannose, respectively. The biomass yield of the strains varied between 65 and 140 mg dry weight/g glucose.

  • 9. Wikandari, Rachma
    et al.
    Sari, Noor Kartika
    A'yun, Qurrotul
    Millati, Ria
    Cahyanto, Muhammad Nur
    Niklasson, Claes
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Effects of Lactone, Ketone, and Phenolic Compounds on Methane Production and Metabolic Intermediates During Anaerobic Digestion.2015In: Applied Biochemistry and Biotechnology, ISSN 0273-2289, E-ISSN 1559-0291, Vol. 175, no 3, p. 1651-1663Article in journal (Refereed)
    Abstract [en]

    Fruit waste is a potential feedstock for biogas prodn. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas prodn. Lactones, ketones, and phenolic compds. are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compds., i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane prodn., biogas compn., and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compds. were added at concns. of 0.05, 0.5, and 5 g/L. The results show that the addn. of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane prodn. by 50 % (MIC50). Methane content was reduced by 90 % with the addn. of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide prodn., was obsd. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane prodn. by 83-132 % at a concn. of 5 g/L. [on SciFinder(R)]

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf