Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jansson, Anette
    et al.
    Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET).
    Patinvoh, Regina J.
    Lagos State Univ, Nigeria.
    Horvath, Ilona Sarvari
    University of Borås, Sweden.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Sweden.
    Dry Anaerobic Digestion of Food and Paper Industry Wastes at Different Solid Contents2019In: Fermentation - Basel, E-ISSN 2311-5637, Vol. 5, no 2, p. 1-10, article id 40Article in journal (Refereed)
    Abstract [en]

    A large volume of food is being wasted every year, while the pulp and paper industry also generate a large amount of solid wastes on a daily basis, causing environmental challenges around the world. Dry anaerobic digestion (AD) of these solid wastes is a cost-effective method for proper management. However, dry digestion of these waste streams has been restricted due to their complex structure, the presence of possible inhibitors and inappropriate operating conditions. In light of this fact, dry digestion of food waste (FW) and paper wastes (PW) was conducted at different total solid (TS) concentrations of reactor mixtures of 14%, 16%, 18% and 20% TS, corresponding to substrate to inoculum (S/I) ratio of 0.5 and 1; investigating the optimum operating conditions for effective dry digestion of these complex wastes. The highest methane yields of 402 NmlCH(4)/gVS and 229 NmlCH(4)/gVS were obtained from digestion of FW and PW, respectively at 14%TS corresponding to an S/I ratio of 0.5. Increasing the S/I ratio from 0.5 to 1 and thereby having a TS content of 20% in the reactor mixtures was unfavorable to the digestion of both substrates.

  • 2.
    Nair, Ramkumar B
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Eh-Hser Nay, Theimya
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business. Biotechnology.
    Waste Bread Valorization Using Edible Filamentous Fungi2017Conference paper (Refereed)
    Abstract [en]

    The present study is the first of its kind to use industrial waste bread for ethanol and food-grade filamentous fungal biomass production, with an ‘integrated-biorefinery’ approach for the existing wheat-based ethanol facilities. Four different food-grade fungi such as Neurospora intermedia, Aspergillus oryzae, belonging to ascomycetes and Mucor indicus, Rhizopus oryzae, belonging to zygomycetes, were screened. Initial screening for fungal cultures (without external enzyme saccharification) showed an ethanol yield maximum of 47.8 ±1.1 to 67.3 ±2.1, and 38.7 ±1.1 to 67.7±1.8 mg per g dry substrate loading from whole-grain bread and white-bread respectively, post the enzymatic liquefaction. Scale-up of the N. intermedia fermentation achieved using bench scale airlift reactor showed an ethanol yield maximum of 91.6 ±2.1 and 87.5 ±1.9 mg per g dry substrate loading for whole-grain bread and white-bread respectively.

  • 3.
    Nair, Ramkumar B
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Kalif, Mahdi
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ferreira, Jorge A.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes2017In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 245, p. 145-151Article in journal (Refereed)
    Abstract [en]

    The use of hot-water (100 °C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100 °C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191–344% and 115–300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol.

  • 4.
    Nair, Ramkumar B
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ravula, Vamsikrishna
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik R.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Neurospora intermedia pellets for enhanced ethanol and fungal biomass production from wheat straw2017In: Proceedings of 39th Symposium on Biotechnology for Fuels and Chemicals, 2017Conference paper (Refereed)
    Abstract [en]

    Recent studies at our research group have described an ‘integrated-biorefinery’ model for the existing 1st generation wheat-based ethanol facilities, by using edible filamentous fungus, Neurospora intermedia. The process focuses on the production of 2nd generation ethanol together with fungal biomass (for animal or aquaculture feed applications) from wheat straw. A final ethanol yield of 94% (theoretical maximum based on substrate glucan content) was obtained with N. intermedia fermentation in dilute phosphoric acid pretreated (0.7%w/v acid, 7min at 201±4°C) and enzymatically hydrolyzed (10FPU cellulase/g substrate) straw. Fungal cultivation in liquid straw hydrolysate resulted in a maximum of 3.71±0.11g/L dry fungal biomass. Considering the industrial significance of the fungal process, attempts were made to manipulate N. intermedia to grow as pellet forms in the straw hydrolysate, for the first time. Of the various culture conditions screened, stable pellet morphology was obtained at pH 3.0 to 5.5, resulting in uniform pellets with size ranging from 2.5 to 4.25mm. Fermentation using N. intermedia pellets in the liquid straw hydrolysate, resulted in about 31% increase in the ethanol yield, with an improved glucose assimilation by the pellets (82% reduction) as opposed to filamentous forms (51% reduction), at similar culture conditions. The growth of fungal pellets in presence of inhibitors (at different concentrations of acetic acid and furfural) resulted in about 11% to 45% increase in ethanol production as compared to filamentous forms, at similar growth conditions in the liquid straw hydrolysate. Detailed results on N. intermedia pelletization in liquid straw hydrolysate will be discussed in this presentation.

  • 5.
    Nair, Ramkumar
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lennartsson, Patrik
    University of Borås, Faculty of Textiles, Engineering and Business.
    Taherzadeh, Mohammad
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia2016In: AMB Express, ISSN 2191-0855, E-ISSN 2191-0855, Vol. 6, no 31, article id 10.1186/s13568-016-0203-2Article in journal (Refereed)
    Abstract [en]

    Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus,Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0–10.0), agitation rate (100–150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0–4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast- fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L).

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf