Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aneja, Arun
    et al.
    College of Engineering and Technology, East Carolina University.
    Pal, Rudrajeet
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås.
    Textile Sustainability: Living Within Our Means2015Conference paper (Other academic)
    Abstract [en]

    Sustainability is defined by Brundtland as “….development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. An evaluation of the current ‘pulse of the planet’ which consists of nature’s core business of creating diversity, abundance and continuance yields a bleak future. It suggests limited supplies of natural resources that pose an obstacle to future worldeconomic growth. This paper makes an assessment of a sustainable future for textiles based on economic, social,and environmental dimensions. Both strategic and tactical remedies for the textile value chain are provided. Thecollective actions suggested will not ensure success but rather provide a framework for a better and safer planet.

  • 2.
    Carlsson, Jan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Pal, Rudrajeet
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mouwitz, Pia
    University of Borås, Faculty of Textiles, Engineering and Business.
    Lidström, Anna
    Another Design.
    ReDesign kläder: Förstudie2014Report (Other academic)
    Download full text (pdf)
    fulltext
  • 3.
    Carlsson, Jan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Torstensson, Håkan
    University of Borås, Faculty of Textiles, Engineering and Business.
    Pal, Rudrajeet
    University of Borås, Faculty of Textiles, Engineering and Business.
    Paras, Manoj K.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Re:Textile – Planning a Swedish Collection and Sorting Plant for Used Textiles2015Report (Other academic)
    Abstract [sv]

    Studien belyser följande frågor:− Finns det några realistiska förutsättningar att etablera en svensk sorteringsanläggning för insamlade textilier med hänsyn tagen till redan etablerade insamlingsstrukturer?− Vilka ar de avgörande kritiska faktorerna?− Hur ser framtiden ut?− Hur kan en framkomlig väg se ut för att etablera en lämplig strategi för en cirkulär ekonomi avseende använda textilier?Grundförutsättningar för studien:Idag bedrivs den ordnade insamlingen av textilier huvudsakligen av välgörenhetsorganisat-ioner som Myrorna, Röda Korset, etc. Av en total konsumtionsvolym på ca 13 kg/capita i Sverige (omfattande kläder och hemtextil) samlas 3-4 kg in av mestadels seriösa operatörer genom direktöverlämning eller genom insamlingscontainrar. Vissa butiker/varumärken har också kommit igång med mottagning av använda textilier, t.ex. H&M, Hemtex, Kapp-Ahl m.fl. Övriga kvantiteter (8-10 kg) har vi inte exakt kännedom om, men troligen hamnar de förr eller senare i containrar för brännbart.Motivet för de seriösa insamlingsorganisationerna att bedriva denna verksamhet är dels att skapa finansiella resurser för att kunna bedriva sin hjälpverksamhet, dels att skapa sysselsätt-ning för en växande kader av personer i arbetsträning och liknande. Detta innebär att verksam-heten i stor utsträckning bedrivs av volontärer samt av subventionerad personal vad avser ar-betskostnader. Samhällsnyttan som skapas genom detta är mycket stor och bör inte äventyras av förändringar i denna struktur. I regeringsuppdraget 2014 till Naturvårdsverket angående hantering av textilier framhålls detta också som en förutsättning.

    Den sorteringsverksamhet som bedrivs av dessa organisationer syftar till att sortera ut de bästa produkterna, som har förutsättningar att säljas genom egna butikskanaler. Ungefär 20 % av volymerna tar denna väg, och dessa har en helt avgörande ”värdeuppväxling”. Övriga 80 % exporteras till avsevärt lägre värde än de första 20 procenten.

    Eftersom välgörenhetsorganisationerna utför denna första fas på ett utomordentligt kostnads-effektivt sätt, samt därigenom skapar samhällsnytta som också är mycket kostnadseffektiv, kan vi inte se något som helst motiv att ändra på detta förhållande utan kanske istället förbättra möjligheterna att utveckla deras värdefulla arbete.

    För en regional/nationell sorteringscentral återstår alltså en potential bestående av ex-portkvantiteterna samt de volymer som hamnar i ”brännbart”.

    De beräkningar vi har utfört baseras på en sorteringsanläggning som bedrivs efter normala affärsbetingelser, dvs. avtalsenliga löner, marknadsmässiga hyror och avskrivningar samt rå-dande finansiella kostnader.

    Den kritiska volymen för en sådan anläggning har beräknats till en kapacitet om 40 ton/dag motsv. ca 50 anställda. Denna kapacitet motsvarar ca 40 % av totalförbrukningen (13 kg/ca-pita) i Västra Götaland eller ca 170 % om insamlingsnivån ligger på nuvarande ca 3 kg/capita.

    För att nå erforderlig volym krävs alltså:

    − Utökat geografiskt upptagningsområde

    − Maximerade marknadsandelar

    − Större insamlad volym per capita.

    Beaktande dagens kostnadsläge för en effektiv anläggning om 40 ton/dag samt de mark-nadsmässiga priser/intäkter som idag är för handen avseende ”2nd choice” kvantiteter är projektet inte ekonomiskt försvarbart. Kostnads/intäktsförhållandet ligger på ca 7,80 SEK/kg mot ca 6,50 SEK/kg.

    De faktorer som påverkar detta förhållande är följande:

    − Andelen förstasortering i fraktionerna (andelen är noll i vårt exempel)

    − Totalvolymerna

    − Kvalitetsfördelning. Bärbara plagg i förhållande till icke bärbart, dvs. kvantiteter för re-cycling etc.

    − Produktiviteten

    −Lönekostnaderna

    − Låga marknadspriser på framförallt material till recycling samt ”rags” (putstrasor)

    − Teknologi för hantering respektive potentiell sensorteknologi för automatisk sortering av-seende främst förekomst av skadliga kemikalier samt fiberinnehåll

    − Recyclingsteknik för återvinning av använda fiber till nya fiber; inte kommersiellt tillgäng-lig ännu

    − Vertikal integration (insamling-sortering; recyclingprocesser/second hand-retailing)Dessa förhållanden kan självfallet förändras och ändra bilden av konceptets realism.

    Slutsatser avseende marknadsutveckling:

    Beaktande att framtidens fiberbehov om mer än 200 miljoner ton/år (från nuvarande ca 90 miljoner ton/år) huvudsakligen genereras genom befolkningsökning och ekonomisk tillväxt i utvecklingsländer som utgör dagens exportmarknader, får detta till följd att dessa marknader blir självförsörjande avseende bärbara second hand-kläder. Alltså: våra exportmarknader minskar betydligt.

    De tekniker och marknader som måste utvecklas i strävan mot en lönsam cirkulär ekonomi utgörs följaktligen av

    − Sorteringsteknik som kan detektera och sortera på skadligt kemiskt innehåll respektive fiberinnehåll. Dessa två sorteringsförutsättningar är grundläggande för säkra och lönsamma produktinnovationer.

    − Nya tekniker och processer för utveckling av nya innovativa, värdeskapande produkter från både mekanisk, kemisk och termisk recycling.

    Dessa båda områden är centrala för att värdet på insamlade textilier kan öka vad avser både volym och priser.

    Förslag till fortsatt arbete; ett diskussionsscenario:Förslaget är att skapa en flexibel öppen struktur, baserad på tre grundkomponenter:

    1. Bygg upp regionala sorteringscentra som ger grundförutsättningar för insamlingsorganisationerna att bedriva sin verksamhet på ett effektivt sätt.En bra samlad sorteringsvolym (summan av varje organisations insamling och sortering)ligger lämpligtvis på ca 40 ton/dag. Vissa gemensamma funktioner kan utvecklas som t.ex. balning/packning, intern transportlogistik etc. Detta skulle ge skalfördelar utan att påverka varje organisations egna affärsprocesser. Det bör kunna vara självfinansierat genom hyror respektive sålda logistiktjänster.

    2. Skapa en agentur eller liknande med uppgift att sälja exportkvantiteter på uppdrag av insamlingsorganisationerna. Motivet skall vara att bättre kunna optimera en kundsamman-sättning som ger en optimal mix av EKONOMI – EKOLOGI – ETIK. Genom att den totalt genererade volymen blir större borde en professionell organisation kunna nå bättre totalt utfall avseende de tre E:na. Erfarenheter från vår empiri ger vid handen att det finns potential för bättre utfall. Den borde också kunna vara självfinansierad genom t.ex. provisionsintäkter.OBS. Om förutsättningarna förändras enligt vår studie kan en fysisk sorteringsanläggning strukturellt etableras och ersätta agenturen.

    3. Ovanstående punkter ger förutsättningar för att bygga upp en testbädd som är inriktad på att kunna serva företag, forskningsorganisationer etc. med kapacitet att köra betatester, som är ett nödvändigt inslag i produktutvecklingsprocessen. Eftersom Sverige saknar en infrastruktur för både subindustriell produktion av fiber och recycling av textilier är detta en viktig förutsättning för utveckling av de produkter/processer som ligger till grund för värdeutvecklingen av använda textilier.

    Download full text (pdf)
    fulltext
  • 4.
    Chizaryfard, Armaghan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Samie, Yassaman
    University of Borås, Faculty of Textiles, Engineering and Business.
    Pal, Rudrajeet
    University of Borås, Faculty of Textiles, Engineering and Business.
    New Textile Waste Management Through Collaborative Business Models for Sustainable Innovation2018In: Detox Fashion: Waste Water Treatment / [ed] S.S. Muthu, Singapore: Springer, 2018, p. 81-111Chapter in book (Refereed)
    Abstract [en]

    In most nations, textile waste management is recognized to be a multi-actor system; however most participating actors tend to play a significant role in handling and treating the textile waste single-handedly thus resulting in a very fragmented system fraught with many challenges. In addition, the main textile waste treatment, e.g. in Sweden is still incineration (nearly 55% of per capita disposal) resulting in low degrees of value generation. Nearly 20% of the waste is handled by ten major charities in Sweden. This highlights the necessity for the actors to perform in a network and expand their collaboration, thus move more efficiently towards development of a sustainable value innovation, and find an alternative new way to manage textile waste. Given this our study strives to investigate the challenges and opportunities of implementation of a collaborative business model for sustainable innovation. By taking the benefits of actor-, activity- and value-mapping technique, our study helps in gaining a better realization of the Swedish textile waste management system. The core values of actors have been identified along with the identification of their shared and conflicting values with the aid of a value mapping tool. Data was collected through semi-structured interviews from seven organizations representing the Swedish textile waste man- agement system. Overall our study provides a rich and descriptive picture of the participating actors, their activities, collaboration and value-orientations within the Swedish textile waste management system, and highlights the key drivers of a collaborative solution, viz. legislation, trust and shared understanding and communication, that can be foreseen to increase dialogue and collaboration among actors to support the movement from egocentric to a multi-actor business model. A clear benefit of such collaborative business models is substitution of incineration by higher degrees of reuse of textiles, which has high potential to generate positive environmental impact, through reduction of toxic effects of textile incineration and also new production processes.

  • 5.
    Duru, Sinem Demir
    et al.
    International Financial Corporation, World Bank.
    Pal, Rudrajeet
    University of Borås, Faculty of Textiles, Engineering and Business.
    Hertveldt, Sabine (Commentator for written text)
    International Financial Corporation (IFC) Global MAS Advisory.
    Manchanda, Sumit (Commentator for written text)
    International Financial Corporation (IFC) Global MAS Advisory.
    Innovation in manufacturing Personal Protective Equipment: Toward Sustainability and Circularity2021Report (Other academic)
    Abstract [en]

    Adopting circular economy approaches is becoming an increasingly important part of policy makers’ agendas in the fight against climate change. These approaches include reducing material inputs, using more environmentally friendly and reusable materials when producing goods, ensuring materials are properly recycled, and minimizing waste and pollution. They have become even more important in the wake of the COVID-19 pandemic, with personal protective equipment (PPE) becoming an inseparable part of daily life. Manufacturers across the globe had to increase PPE production, which inevitably created a surge in plastic waste because polypropylene is still the main material used to manufacture PPE for health-care workers. A recent research study estimates that, since the outbreak, the amount of plastic waste generated globally is 1.6 million tons per day.Furthermore, an estimated 3.4 billion single-use face masks and shields are being discarded every day. This unpredicted increase in plastic waste is happening at a time when countries are reluctant to recycle products because of the lack of complementary decontamination steps and coordination in waste management.Some manufacturers took this opportunity of increased PPE production to adopt circular economy approaches that can be replicated by others. Decentralized production and material sourcing became more important as supply chains were severely disrupted by the pandemic. This has accelerated the ongoing changes in conventional production methods, with businesses embracing a cradle-to-cradle manufacturing model—that is, rethinking the design of their products from the starting point at the sourcing stage through to the end of the product’s life.

    This is not without its challenges. For example, when replacing plastics with alternative materials, manufacturers need to ensure that these materials meet quality standards set by standards institutions and enforced by governments.However, PPE manufacturers cannot shoulder the responsibility of the global plastic waste challenge alone. This publication calls on a broad range of stakeholders along the PPE value chain to work together to shift toward a more sustainable and circular PPE ecosystem.This report takes stock of approaches that PPE manufacturers are taking to make their production more sustainable and achieve a true circular economy, while responding to COVID-19 PPE shortages. It does not provide a life-cycle assessment of each PPE product, which is needed to evaluate the environmental effects associated with each product against the benefits created. The approaches highlighted in this report can be grouped into four main categories:

    •Circular inputs: The use of renewable, bio-based, or completely recyclable materials as input.

    •Resource recovery: Ensuring that useful resources and energy are recovered from disposed products by collecting and reprocessing products at the end of their life.

    •Product use extension: Prolonging the lifespan of PPE products by choosing a design that allows the product to be repaired or by choosing durable materials as inputs for the main PPE parts.

    •Product as service: The product-as-service model allows the consumer to use a product that is retained by the producer to increase resource productivity (for example, leasing PPE). This model allows PPE manufacturers to move from selling products to selling services.

  • 6.
    Fernandes Vantil, Samara
    University of Borås, Faculty of Textiles, Engineering and Business.
    Prioritising Ecodesign Strategies for Product Sustainable Circularity Using AHP and LCA: a study case2023Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Addressing environmental burdens associated with the operation and infrastructure of the electrical transmission system products is imperative. Implementing Ecodesign practices in the early stages of product development and adopting circularity approaches throughout the product value chain is crucial to mitigate adverse impacts. However, transitioning from a traditional to a circular business model necessitates a well-defined strategic plan enabling organisations to assess their current situation and develop effective tactics. Nevertheless, trade-offs between circularity and sustainability must be carefully considered, as circular practices may not always align with the triple bottom line. Therefore, accurately prioritising circular strategies is essential for establishing a circular and sustainable product life cycle. This research evaluates business practices of Grid Solutions and proposes priority strategies, guidelines and KPIs to enhance product circularity. For this purpose, the Analytic Hierarchy Process (AHP), a Multi-Criteria Decision-Making (MCDM) methodology based on expert’s judgment, is implemented. The prioritised strategies are analysed using an Importance vs Difficulty matrix to identify high-value and strategic actions. Simultaneously, product circularity indicators are evaluated and ranked based on the AHP outcomes. Subsequently, the most relevant indicator is assessed through Life Cycle Assessment (LCA) in the prioritised guidelines, through High Voltage (HV) equipment. Results highlight that minimising energy consumption is essential for improving product circularity, as LCA analysis confirms. The chosen circular indicator is tested by comparing an HV product version with lower energy losses to the product baseline, exhibiting a 51.45% increase in sustainable circularity and approximately 20% reduction in adverse environmental impacts. Additionally, prioritising efforts to minimise non-conformities, promote repairability, and enable upgrades are also of high relevance. Finally, the research provides recommendations for New Product Introduction (NPI) frameworks and sustainable reporting.

    Download full text (pdf)
    fulltext
  • 7.
    Gaur, V. K.
    et al.
    Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
    Sharma, P.
    Department of Bioengineering, Integral University, Lucknow, India.
    Sirohi, R.
    Department of Postharvest Process and Food Engineering, GB Pant University of Agriculture and Technology, Pantnagar, India.
    Varjani, S.
    Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Chang, J. -S
    Department of Chemical Engineering and Materials Science, College of Engineering, Tunghai University, Taichung, Taiwan.
    Yong Ng, H.
    National University of Singapore, Environmental Research Institute, 5A Engineering Drive 1, Singapore, 117411, Singapore.
    Wong, J. W. C.
    Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, Hong Kong.
    Kim, S. -H
    School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
    Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview2022In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 343, article id 126059Article, review/survey (Refereed)
    Abstract [en]

    Waste generation is becoming a global concern owing to its adverse effects on environment and human health. The utilization of waste as a feedstock for production of value-added products has opened new avenues contributing to environmental sustainability. Microorganisms have been employed for production of biosurfactants as secondary metabolites by utilizing waste streams. Utilization of waste as a substrate significantly reduces the cost of overall process. Biosurfactant(s) derived from these processes can be utilized in environmental and different industrial sectors. This review focuses on global market of biosurfactants followed by discussion on production of biosurfactants from waste streams such as agro-industrial waste and waste cooking oil. The need for waste stream derived circular bioeconomy and scale up of biosurfactant production have been narrated with applications of biosurfactants in environment and industrial sectors. Road blocks and future directions for research have also been discussed. © 2021 Elsevier Ltd

  • 8.
    Hosseinian, Aida
    et al.
    Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, 90014, Oulu, Finland.
    Brancoli, Pedro
    University of Borås, Faculty of Textiles, Engineering and Business.
    Vali, Naeimeh
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ylä-Mella, Jenni
    Pettersson, Anita
    University of Borås, Faculty of Textiles, Engineering and Business.
    Pongrácz, Eva
    University of Borås, Faculty of Textiles, Engineering and Business.
    Life cycle assessment of sewage sludge treatment: Comparison of pyrolysis with traditional methods in two Swedish municipalities2024In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 455, article id 142375Article in journal (Refereed)
    Abstract [en]

    To achieve a closed nutrient cycle and more sustainable food production, enhanced nutrient recycling in the agri-food system is a necessity. Pyrolysis is an emerging technology to recycle the nutrient content of sewage sludge. The produced biochar can be used to reduce the need for mineral fertilizers; in addition, pyrolysis can also handle potential pollutants such as microplastics and pathogens present in sewage sludge. In this research, a life cycle assessment (LCA) was carried out to determine the environmental impact of sewage sludge pyrolysis as an alternative to current practices of two different cases of sewage sludge treatment in two municipalities in Sweden. The results indicated that avoiding mineral fertilizer production by using biochar has a significant influence on the environmental benefits. Furthermore, it showed that an integrated system of anaerobic digestion followed by pyrolysis could perform as the most environmental-friendly option for sewage sludge treatment with a lower risk of transferring pollution to the soil.

    Download full text (pdf)
    fulltext
  • 9.
    Jain, A.
    et al.
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, Guizhou, China.
    Sarsaiya, S.
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, Guizhou, China.
    Mukesh Kumar, Awasthi
    University of Borås, Faculty of Textiles, Engineering and Business. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Singh, R.
    Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.
    Rajput, R.
    Department of Microbiology & Molecular Biology, Modern Diagnostic & Research Centre, Gurugram, Haryana, India.
    Mishra, U. C.
    Laboratory, CES Analytical and Research Services India Private Limited (Formerly Known as Creative Enviro Services), Bhopal, Madhya Pradesh, India.
    Chen, J.
    Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, Guizhou, China.
    Shi, J.
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, Guizhou, China.
    Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks2022In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 307, article id 121859Article in journal (Refereed)
    Abstract [en]

    The generation of bioenergy and bioproducts from biowaste streams has piqued global interest in achieving a cutting-edge circular economy. The integration of biowaste into the cutting-edge circular economy has the potential to significantly increase the production of sustainable bioproducts and bioenergy. The potential for advanced forms and innovations to transform complicated, natural-rich biowastes into a variety of bioproducts and bioenergy with an advanced circular economy has been demonstrated in this article. It is described to emphasise the critical nature of research into improving biowaste conversion into circular economies and the impact that bioeconomy has on various societal sectors. The present study examined how microbial profiles have transformed treasured bioenergy and bioproducts aspirations into mechanical bioproducts marvels discovered through cutting-edge microbial analyses of biowaste. Additionally, the article discussed contemporary experiences with the developing circular economy of biowaste as a resource for numerous bioproducts and bioenergy businesses, as well as the emanant biowaste biorefinery methods that could be used to evaluate industrial-scale maintainable financial models for updated bioproducts and other generation-related issues.

  • 10.
    Kumar, Vinod
    et al.
    School of Water, Energy, Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
    Brancoli, Pedro
    University of Borås, Faculty of Textiles, Engineering and Business.
    Narisetty, Vivek
    School of Water, Energy, Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
    Wallace, Stephen
    Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, United Kingdom.
    Charalampopoulos, Dimitris
    Department of Food and Nutritional Sciences, University of Reading, United Kingdom.
    Kumar Dubey, Brajesh
    Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
    Kumar, Gopalakrishnan
    Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, Stavanger, 4036, Norway.
    Bhatnagar, Amit
    Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland.
    Kant Bhatia, Shashi
    Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bread waste: A potential feedstock for sustainable circular biorefineries2023In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 369, article id 128449Article, review/survey (Refereed)
    Abstract [en]

    The management of staggering volume of food waste generated (∼1.3 billion tons) is a serious challenge. The readily available untapped food waste can be promising feedstock for setting up biorefineries and one good example is bread waste (BW). The current review emphasis on capability of BW as feedstock for sustainable production of platform and commercially important chemicals. It describes the availability of BW (>100 million tons) to serve as a feedstock for sustainable biorefineries followed by examples of platform chemicals which have been produced using BW including ethanol, lactic acid, succinic acid and 2,3-butanediol through biological route. The BW-based production of these metabolites is compared against 1G and 2G (lignocellulosic biomass) feedstocks. The review also discusses logistic and supply chain challenges associated with use of BW as feedstock. Towards the end, it is concluded with a discussion on life cycle analysis of BW-based production and comparison with other feedstocks.

    Download full text (pdf)
    fulltext
  • 11.
    Liu, H.
    et al.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Qin, S.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Sirohi, R.
    Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea.
    Ahluwalia, V.
    Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India.
    Zhou, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Sindhu, R.
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India.
    Binod, P.
    Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea.
    Rani Singhnia, R.
    Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
    Kumar Patel, A.
    Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
    Juneja, A.
    Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA.
    Kumar, D.
    Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA.
    Zhang, Z.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Kumar, J.
    Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Kumar Awasthi, M.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
    Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review2021In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 332, article id 125181Article, review/survey (Refereed)
    Abstract [en]

    Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy. 

  • 12. Movaffaghi, Hamid
    et al.
    Yitmen, Ibrahim
    Department of Construction Engineering and Lighting Science, School of Engineering, Jönköping University, 551 11 Jönköping, Sweden.
    Framework for Dynamic Circular Economy in the Building Industry: Integration of Blockchain Technology and Multi-Criteria Decision-Making Approach2023In: Sustainability, E-ISSN 2071-1050, Vol. 15, no 22, article id 15914Article in journal (Refereed)
    Abstract [en]

    The building industry is one of the most resource-intensive sectors in industrialized countries, requiring a shift from a linear to a more sustainable circular economic model. Nevertheless, there are several major challenges, such as the management of information regarding used materials and products, the lack of cross-sector documentation tools, and sales operations for implementing a dynamic circular economy in the building industry. To overcome these challenges, blockchain technology for documentation, tracing used materials and products, and the use of multi-criteria decision-making approaches for the ranking and selection of optimal used materials and products have emerged as crucial facilitators, with the potential to address the technological, organizational, environmental, and economic requirements. The purpose of this study is to develop a theoretical framework of a digital platform ecosystem for implementing a dynamic circular economy in the building industry through the integration of blockchain technology and a multi-criteria decision-making approach built upon their synergy. The priority order of two alternatives of used materials and products was determined according to the AHP method, leading to selection of the most sustainable alternative. This research study contributes to dynamic circular economies by (1) facilitating cross-sector information transparency and the tracing of used materials and products from their sources to their end-of-life stages and through (2) the ranking and selection of used materials and products based on their overall properties.

    Download full text (pdf)
    fulltext
  • 13.
    Mukesh Kumar, Awasthi
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
    Sarsaiya, S.
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
    Wainaina, Steven
    Rajendran, K.
    Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, India.
    Awasthi, S. K.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
    Liu, T.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
    Duan, Y.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
    Jain, A.
    Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
    Sindhu, R.
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, India.
    Binod, P.
    Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, India.
    Pandey, A.
    Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
    Zhang, Z.
    College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
    Taherzadeh, Mohammad J
    University of Borås, Faculty of Textiles, Engineering and Business.
    Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste2021In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 144, article id 110837Article in journal (Refereed)
    Abstract [en]

    The energy sector contributed to three-fourth of overall global emissions in the past decade. Biological wastes can be converted to useful energy and other byproducts via biological or thermo-chemical routes. However, issues such as techno-economic feasibility and lack of understanding on the overall lifecycle of a product have hindered commercialization. It is needed to recognize these inter-disciplinary factors. This review attempts to critically evaluate the role of technology, economics and lifecycle assessment of bio-waste in two processing types. This includes: 1. biological and, 2. thermo-chemical route. The key findings of this work are: 1. Policy support is essential for commercialization of a waste treatment technology; 2. adequate emphasis is necessary on the social dimensions in creating awareness; and 3. from a product development perspective, research should focus on industrial needs. The choice of the treatment and their commercialization depends on the regional demand of a product, policy support, and technology maturity. Utilization of bio-wastes to produce value-added products will enhance circular economy, which in turn improves sustainability. 

  • 14.
    Wijayarathna, Egodagedara Ralalage Kanishka Bandara
    University of Borås, Faculty of Textiles, Engineering and Business.
    Development of Fungal Leather-like Material from Bread Waste2021Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
    Abstract [en]

    Food waste and fashion pollution are two of the significant global environmental issues throughout the recent past. In this research, it was investigated the feasibility of making a leather-like material from bread waste using biotechnology as the bridging mechanism. The waste bread collected from the supermarkets were used as the substrate to grow filamentous fungi species Rhizopus Delemar and Fusarium Venenatum. Tanning of fungal protein fibres was successfully performed using vegetable tanning, confirmed using FTIR and SEM images. Furthermore, glycerol and a biobased binder treatment was performed for the wet-laid fungal microfibre sheets produced. Overall, three potential materials were able to produce with tensile strengths ranging from 7.74 ± 0.55 MPa to 6.92 ± 0.51 MPa and the elongation% from 16.81 ± 1.61 to 4.82 ± 0.36. The binder treatment enhanced the hydrophobicity even after the glycerol treatment, an added functional advantage for retaining flexibility even after contact with moisture. The fungal functional material produced with bread waste can be tailored successfully into leather substitutes using an environmentally benign procedure.

    Download full text (pdf)
    Development of Fungal Leather-like Material from Bread Waste
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf