Change search
Refine search result
12 1 - 50 of 53
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abtahi, Farhad
    et al.
    Karolinska Institutet.
    Anund, Anna
    Fors, Carina
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Karolinska Institutet.
    Lindecrantz, Kaj
    University of Borås, Faculty of Textiles, Engineering and Business. Karolinska Institutet.
    Association of Drivers’ sleepiness with heart rate variability. A Pilot Study with Drivers on Real Road2017Conference paper (Other academic)
  • 2.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Ji, Guangchao
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Rödby, Kristian
    University of Borås, Faculty of Textiles, Engineering and Business.
    Björlin, Anders
    Kiwok AB.
    Östlund, Anders
    Kiwok AB.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Textile-Electronic Integration in Wearable Measurement Garments for Pervasive Healthcare Monitoring2015Conference paper (Other academic)
  • 3.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Ji, Guangchao
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Rödby, Kristian
    University of Borås, Faculty of Textiles, Engineering and Business.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype2015In: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, p. 3121-3124Conference paper (Refereed)
  • 4.
    Abtahi, Farhad
    et al.
    Institute of Environmental Medicine, Karolinska Institutet, 171 65 Stockholm, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Lu, Ke
    School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Diaz-Olivares, Jose A
    School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Forsman, Mikael
    Institute of Environmental Medicine, Karolinska Institutet, 171 65 Stockholm, Sweden.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Hälsovägen 7, 141 57 Stockholm, Sweden; Department of Biomedical Engineering, Karolinska University Hospital, 171 76 Solna, Sweden .
    Lindecrantz, Kaj
    University of Borås, Science Park Borås. Institute of Environmental Medicine, Karolinska Institutet, 171 65 Stockholm, Sweden .
    Wearable Sensors Enabling Personalized Occupational Healthcare2018In: Intelligent Environments 2018 / [ed] Ioannis Chatzigiannakis, Yoshito Tobe, Paulo Novais, Oliver Amft, Amsterdam: IOS Press, 2018, p. 371-376Chapter in book (Other academic)
    Abstract [en]

    This paper presents needs and potentials for wearable sensors inoccupational healthcare. In addition, it presents ongoing European and Swedishprojects for developing personalized, and pervasive wearable systems for assessingrisks of developing musculoskeletal disorders and cardiovascular diseases at work.Occupational healthcare should benefit in preventing diseases and disorders byproviding the right feedback at the right time to the right person. Collected datafrom workers can provide evidence supporting the ergonomic and industrial tasksof redesigning the working environment to reduce the risks.

    Download full text (pdf)
    fulltext
  • 5.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Dizon, M
    KTH-School of Technology and Health.
    Johansson, M
    KTH-School of Technology and Health.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Evaluating Atrial Fibrillation Detection Algorithm based on Heart Rate Variability analysis2015In: Medicinteknikdagarna, Uppsala: Svensk förening för medicinsk teknik och fysik , 2015Conference paper (Refereed)
  • 6.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Dizon, M
    KTH-School of Technology and Health.
    Johansson, M
    KTH-School of Technology and Health.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Evaluation of Atrial Fibrillation Detection by using Heart Rate Variability analysis2015Conference paper (Other academic)
  • 7.
    Abtahi, Farhad
    et al.
    KTH-School of Technology and Health.
    Lu, Ke
    KTH-School of Technology and Health.
    Guangchao, Li
    KTH-School of Technology and Health.
    Rödby, Kristian
    University of Borås, Faculty of Textiles, Engineering and Business.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    A Knitted Garment using Intarsia Technique for Heart Rate Variability Biofeedback: Evaluation of Initial Prototype.2015Conference paper (Other academic)
  • 8. Abtahi, Farhad
    et al.
    Snäll, Jonathan
    Aslamy, Benjamin
    Abtahi, Shirin
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System2015In: Sensors, E-ISSN 1424-8220, Vol. 15, no 1, p. 93-109Article in journal (Refereed)
    Abstract [en]

    Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org.

  • 9.
    Atefi, Seyed Reza
    KTH-School of Technology and Health.
    Electrical Bioimpedance Cerebral Monitoring: From Hyopthesis and Simulation to First Experimental Evidence in Stroke Patients2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Stroke is amongthe leading causes of death worldwide and requires immediate care to prevent death or permanent disability. Unfortunately, the current stateof stroke diagnosis is limited to fixed neuroimaging facilities that do not allow rapid stroke diagnosis. Hence, a portable stroke-diagnosis device could assist in the pre-hospital triage of patients. Moreover, such a portable device could also be useful for bedside stroke monitoring of patients in the Neuro Intensive Care Unit (Neuro-ICU) to avoid unnecessary neuroimaging. Recent animal studies and numerical simulations have supported the idea of implementing Electrical Bioimpedance (EBI) in a portable device, allowing non-invasive assessment as a useful tool for the pre-hospital triage of stroke and Traumatic Brain Injury (TBI) patients. Unfortunately, these studies have not reported any results from human subjects in the acute phase of the stroke. The numerical simulations are also based on simple models that sometimes lack necessary details.

    Finite Element Method (FEM) simulations on a realistic numerical head model as well as experimental Bioimpedance Spectroscopy (BIS) measurements from human subjectsin the acute, subacute and chronic phasesof stroke were used to answer the following research questions: (i) Does stroke modify the electrical properties of brain tissue in a way that is detectable via EBI? (ii) Would it be possible to detect stroke via EBI as early as in the acute and sub-acute phase?(iii) Is EBI sensitive enough to monitor changes caused by stroke pathogenesis?

    Using FEM to simulate electrical current injection on the head and study the resulting distribution of electrical potential on the scalp, it was shown that Intra-Cranial Hemorrhage (ICH) affects the quasi-symmetric scalp potential distribution,creating larger left-right potential asymmetry when compared to the healthy head model. Proof-of-concept FEM simulations were also tested in a small cohort of 6ICH patients and 10 healthy controls, showing that the left-right potential difference in the patients is significantly (p<0.05) larger than in the controls. Using bioimpedance measurements in the acute,  subacute and chronic phasesof stroke and examining simple features, it was also shown that the head EBI measurements of patients suffering stroke are different from controls, enabling the discrimination of healthy controls and stroke patients at any stage of the stroke. The absolute change in test-retest resistance measurements of the control group (~5.33%) was also found to be significantly (p<0.05) smaller than the EBI measurements of patients obtained 24 hours and 72 hours after stroke onset (20.44%). These results suggested that scalp EBI is sensitive to stroke pathogenesis changesand thususeful for bedside monitoring in the Neuro-ICU. These results suggested that EBI is a potentially useful tool for stroke diagnosis and monitoring.

    Finally, the initial observations based on a small number of patients, addressing the proposed future work of this thesis, suggested that the average head resistance amplitude of hemorrhagic stroke patients is smaller than in healthy controls, while ischemic stroke patients show a larger resistance amplitude than the controls. Scalp potential asymmetry analysis of healthy, hemorrhagic and ischemic stroke subjects also suggests that these three groups can be separated. However, these results are based on a small number of patients and need to be validated using a larger cohort. Initial observations also showed that the resistance of the EBI measurements of controls is robust between test and retest measurements, showing no significant difference (less than 2% and p>0.05). Subject position during EBI recording (supine or sitting) did not seem to affect the resistance of the EBI measurements (p>0.05). However, age, sex and head size showed significant effects on the resistance measurements. These initial observations are encouraging for further research on EBI for cerebral monitoring and stroke diagnosis. However, at this stage, considering the uncertainties in stroke type differentiation, EBI cannot replace CT but has the potential to be used as a consultation tool.

  • 10.
    Atefi, Seyed Reza
    et al.
    Harvard Univsersity.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Kamalian, Shervin
    Rosenthal, Eric
    Lev, Michael
    Massachussets University Hospital.
    Bonmassar, Giorgio
    Harvard University.
    Intracranial haemorrhage alters scalp potential distributions in bioimpedance cerebral monitoring applications: preliminary results from FEM simulation on a realistic head model and human subjects2016In: Medical Physics, ISSN 0094-2405, Vol. 43, no 2, p. 675-686Article in journal (Refereed)
    Abstract [en]

    Purpose:

    Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis.

    Methods:

    Finite element method(FEM) simulations and experimental left–right hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors’ custom-made bioimpedance spectrometer. Mean left–right scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch t-test.

    Results:

    The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brainmodels is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors’ preliminary experimental results also confirmed that the left–right scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05).

    Conclusions:

    Realistic, proof-of-concept simulations confirmed that ICH affects quasisymmetric scalp potential distributions. Pilot clinical observations with the authors’ custom-made bioimpedance spectrometer also showed higher left–right potential differences in the presence of ICH, similar to those of their simulations, that may help to distinguish healthy subjects from ICH patients. Although these pilot clinical observations are in agreement with the computer simulations, the small sample size of this study lacks statistical power to exclude the influence of other possible confounders such as age, sex, and electrode positioning. The agreement with previously published simulation-based and clinical results, however, suggests that EBI technology may be potentially useful for ICH detection.

  • 11.
    Atefi, Seyed Reza
    et al.
    Harvard University.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Thorlin, Thorleif
    salhgrenska Hospital.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Stroke Damage Detection Using Classification Trees on Electrical Bioimpedance Cerebral Spectroscopy Measurements2013In: Sensors, E-ISSN 1424-8220, Vol. 13, no 8, p. 10074-10086Article in journal (Refereed)
  • 12.
    Ayllon, David
    et al.
    Universidad de Alcalá.
    Gil-Pita, Roberto
    Universidad de Alcalá.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. KTH-School of Technology and Health.
    Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy2016In: PLOS ONE, E-ISSN 1932-6203, Vol. 11, no 6, article id e0156522Article in journal (Refereed)
    Abstract [en]

    Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely combination. An accurate detection and identification is of extreme importance for further analysis because in some cases and for some applications, certain measurement artifacts can be corrected, minimized or even avoided. In this paper we present a robust method to detect the presence of measurement artifacts and identify what kind of measurement error is present in BIS measurements. The method is based on supervised machine learning and uses a novel set of generalist features for measurement characterization in different immittance planes. Experimental validation has been carried out using a database of complex spectra BIS measurements obtained from different BIS applications and containing six different types of errors, as well as error-free measurements. The method obtained a low classification error (0.33%) and has shown good generalization. Since both the features and the classification schema are relatively simple, the implementation of this pre-processing task in the current hardware of bioimpedance spectrometers is possible.

  • 13.
    Biswas, Tuser
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Yu, Junchun
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nierstrasz, Vincent
    University of Borås, Faculty of Textiles, Engineering and Business.
    Digital inkjet printing of antimicrobial lysozyme on pretreated polyester fabric2022Conference paper (Refereed)
    Abstract [en]

    Lysozyme was inkjet printed on two different polyester fabrics considering several challenges of printing enzymes on synthetic fabric surfaces. Wettability of both the fabrics were improved by alkaline pre-treatment resulting reduction in water contact angle to 60±2 from 95°±3 and to 80°±2 from 115°±2 for thinner and coarser fabric respectively. Activity of lysozyme in the prepared ink was 9240±34 units/ml and reduced to 5946±23 units/ml as of collected after jetting process (before printing on fabric). The formulated ink was effectively inkjet printed on alkali treated polyester fabric for antimicrobial applications. Retention of higher activity of the printed fabric requires further studies on enzyme-fibre binding mechanisms and understanding protein orientation on fabric surface after printing

    Download full text (pdf)
    fulltext
  • 14.
    Biswas, Tuser
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Yu, Junchun
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nierstrasz, Vincent
    University of Borås, Faculty of Textiles, Engineering and Business.
    Enzyme immobilization on textiles by inkjet printing for advanced applications2019Conference paper (Refereed)
    Abstract [en]

    Immobilization of enzymes on textiles can impart a range of advanced applications e.g. anti-microbial, controlled release, drug delivery and bio-sensing (Wehrschütz-Sigl et al., 2010). Such applications enable minimal consumption, recovery, and reusability of these valuable bio-materials compared to their conventional textile applications in surface cleaning and finishing (Araujo et al., 2008). Methods used for immobilization can play important roles to ensure precise, flexible and contamination free application. Compared to many of the conventional methods of textile immobilization such as coating and screen-printing, digital inkjet technology offers many benefits for such advanced applications (Kan and Yuen, 2012). Among various inkjet technologies, drop-on-demand piezoelectric printing is a promising resource-efficient technology for enzyme immobilization. 

     

    The enzymes should retain high activity after the immobilization process. Various factors involved during inkjet printing (Saunders and Derby, 2014) and fabric characteristics (Mohamed et al., 2008) can influence this enzymatic activity. Factors concerning the inkjet procedure include rheology and ionic nature of ink along with the shear force and waveform generated inside a piezoelectric printhead (Magdassi, 2010). Factors dependent upon fabric characteristics include surface structure, pore size distribution, and binding mechanism (Nierstrasz and Warmoeskerken, 2003). In this work, we have studied the effects of inkjet procedures on enzymatic activity. Lysozyme being a stable and well-studied enzyme was chosen for our experiments. A Xennia Carnelian printer with a Dimatix QS10 industrial printhead was used for inkjetting. Lytic activity of lysozyme was studied by a UV-Vis spectrophotometer against decrease of Micrococcus lysodeikticus cell concentration at 450 nm. Results showed ca. 10-15% activity reduction of the jetted lysozyme ink. As all the ink and printer parameters were optimized, the probable reason for such reduction could be the effect of shear forces inside the printhead on three-dimensional conformation of lysozyme. In conclusion, our formulated lysozyme ink showed potential for printing textiles with probable activity reduction that require further investigation. 

  • 15.
    Biswas, Tuser
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Yu, Junchun
    University of Borås, Faculty of Textiles, Engineering and Business.
    Nierstrasz, Vincent
    University of Borås, Faculty of Textiles, Engineering and Business.
    Inkjet printing of enzymes on synthetic fabrics2022Conference paper (Refereed)
    Abstract [en]

    Enzymes can be immobilized on textiles to impart anti-microbial properties in a more environment-friendly manner compared to conventional biocide-based solutions. Such application requires ensuring precise, flexible and contamination-free immobilization methods that can be offered by digital printing compared to coating or screen-printing techniques. Drop-on-demand inkjet printing is a resource-efficient technology that can ensure these requirements. The use of polyester and polyamide-based fabrics is rising for applications ranging from apparel and home furnishing to hygiene and medical textiles. These fibers offer superior chemical, physical, and mechanical properties due to their inert nature but challenge the printing process due to hydrophobicity and lack of functional groups. Lysozyme and tyrosinase are two enzymes showing great potential for grafting on synthetic fabrics paving the way to use them for inkjet printing as well.

    Challenges for inkjet printing of enzymes on synthetic fabric surfaces come in multiple forms i.e. ink recipe formation, printer mechanics and fabric surface characteristics. The ink must maintain a suitable viscosity and surface tension for effective drop ejection and a feasible ionic nature for enzyme activity. Then, the enzyme must be able to sustain the temperature and shear stress generated inside an inkjet printhead. Finally, influential fabric characteristics include surface structure, pore size distribution, evaporation rate and binding mechanism. By considering these parameters, lysozyme and tyrosinase were successfully printed on variously modified synthetic fabrics using a combination of sustainable technologies.

  • 16. Brown, Shannon
    et al.
    Ortiz-Catalan, Max
    Chalmers University of Technology.
    Petersson, Joel
    University of Borås, Faculty of Textiles, Engineering and Business.
    Rödby, Kristian
    University of Borås, Faculty of Textiles, Engineering and Business.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. KTH-School of Technology and Health.
    Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition2016In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, Institute of Electrical and Electronics Engineers (IEEE) , 2016, p. 6074-6077Conference paper (Refereed)
    Abstract [en]

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  • 17. Brown, Shannon
    et al.
    Ortiz-Catalan, Max
    Chalmers University of Technology.
    Petersson, Joel
    University of Borås, Faculty of Textiles, Engineering and Business. Högskolan i Borås.
    Rödby, Kristian
    University of Borås, Faculty of Textiles, Engineering and Business.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. KTH-School of Technology and Health.
    Intarsia-Sensorized Band and Textrodes for the Acquisition of Myoelectric Signals2016In: The Second International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems, International Academy, Research and Industry Association (IARIA) , 2016, p. 14-19, article id 2_10_80013Conference paper (Refereed)
    Abstract [en]

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation, and has been an increasing area of study. This study attempts to use a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques to evaluate the quality of sEMG acquired by knitted textile electrodes. Myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. Overall no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers. On average the textile electrodes produced a high prediction accuracy, >97% across all movements, which is equivalent to the accuracy obtained with conventional gel electrodes (Ag-AgCl). Furthermore the SNR for the Maximum Voluntary Contraction did not differ considerably between the textile and the Ag-AgCl electrodes.

  • 18.
    Buendia, Ruben
    et al.
    Chalmers University of Technology.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Bosaeus, Ingvar
    University of Gothenburg.
    Gil-Pita, Roberto
    Universidad de Alcala.
    Johannsson, Gudmundur
    University of Gothenburg.
    Ellegård, Lars
    University of Gothenburg.
    Ward, Leigh
    University of Queensland.
    Estimation of body fluids with bioimpedance spectroscopy: state of the art methods and proposal of novel methods2015In: Physiological Measurement, ISSN 0967-3334, E-ISSN 1361-6579, Vol. 36, no 10Article in journal (Refereed)
  • 19.
    Chen, Wei
    et al.
    Fudan University.
    Augusto, Juan CarlosMiddlesex University.Seoane, FernandoUniversity of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.Ledhocki, FedorSlovak University of Technology.Arends, JohanTechnical University of Technology.Ungureanu, ConstantinHobo Heeze.Wichert, ReinerFraunhofer IGD.
    Recent Advances in Ambient Assisted Living: Bridging Assistive Technologies, e-Health and Personalized Health Care2015Collection (editor) (Refereed)
  • 20.
    Eriksson, Siw
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sandsjö, Leif
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. MedTech West.
    Three-dimensional Fabrics as Medical Textiles2015In: Advances in 3D Textiles: A volume in Woodhead Publishing Series in Textiles / [ed] X. Chen, Woodhead Publishing Limited, 2015, p. 305-340Chapter in book (Other academic)
    Abstract [en]

    The number of 3D textile applications in medicine is rapidly increasing as new technology and procedures are introduced in health care.  A first estimate of current medical applications of both general and 3D textiles is presented based on the medical devices classification system established by the US Food and Drug Administration. The textile specifics for these applications are covered from a textile technique perspective where the different 3D weaving as well as knitting, braiding and non-woven techniques are described and how their properties they can contribute in medical applications. In addition, emerging opportunities based on smart textiles as part of textile systems are described on a general level. The strong application areas of 3D medical textiles, i.e. wound management, vascular grafting and scaffolding for tissue engineering are covered in detail both from the medical and textiles perspective. Finally, some future lines of development are suggested and a short discussion on how new 3D textiles applications can be developed in close cooperation between the textile industry and the health care sector is presented.

  • 21.
    Eriksson, Siw
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sandsjö, Leif
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Karlsson, MariAnne
    Design & Human Factor, Chalmers University of Technology.
    Facilitating User Involvement in Development of 3D Smart Textiles For Healthcare Applications2015In: Proceedings of the 6th World Conference on 3D Fabrics and their Applications, Manchester,UK/Raleigh,USA, 2015Conference paper (Other academic)
    Abstract [en]

    Smart textiles are textiles based on different types of smart materials that can sense or react on environmental stimuli. This new technology is a growing area which exhibits characteristics particularly suitable for capturing (electro) physiological signals, e.g. to monitor ECG, EEG or respiration. These textiles most often form a three dimensional structure where different materials with different characteristics are bound together in different layers. However, in order to take full advantage of these new opportunities the textile industry needs to find new methods to develop innovative smart textile products. One strong and valuable contribution is to involve users early in the development process.

    The aim of this paper is to highlight how product representations, e.g. prototypes or material samples, can be used to facilitate the communication between users and developers in the development of new healthcare solutions based on textiles. The study presented in this paper was performed through participatory observation. The case is based on the development of a textile structure with three dimensional properties for long-term monitoring of EEG signals.   

    The main findings are that product representations support the exchange of knowledge and experiences between users and developers by five different facilitating roles:

    Product representations serve to demonstrate (technical) solutions; to verbalise, i.e. serve to fill in were words are missing or when terms are not understood; to visualise, i.e. facilitating members of the development team to envision or adapt mental images of the intended future product; to stimulate, i.e. to inspire the development team to suggest new ideas or design; and, finally, to integrate, i.e. to unite different perspectives within the development team.

    Conclusion: By using product representations during the development process to facilitate the dialogue between users and developers, the textile industry may take full advantage of the opportunities made available by new development of materials and new technology in order to fulfil users’ needs.

    Download full text (pdf)
    fulltext
  • 22.
    Euler, Luisa
    et al.
    University of Borås.
    Guo, Li
    University of Borås, Faculty of Textiles, Engineering and Business.
    Persson, Nils-Krister
    University of Borås, Faculty of Textiles, Engineering and Business.
    A review of textile-based electrodes developed for electrostimulation2021In: Textile research journal, ISSN 0040-5175, E-ISSN 1746-7748Article in journal (Refereed)
    Abstract [en]

    Electrical stimulation can be used for the treatment of various nerve and muscle injuries as well as acute and chronic pain conditions. An electrical pulse is applied to a muscle or nerve to activate excitable tissue using internal or external electrodes with the aim of building muscle strength, artificially creating or supporting limb movement or reducing pain. Textile electrodes offer several advantages over conventionally used disposable surface electrodes: they are flexible and re-usable and they do not require hydrogels, thereby avoiding skin irritation and allergic reactions and enhancing user comfort. This article presents a literature review that assesses the state of research on textile electrode constructions. Based on the review, production approaches and designs are compared, methods for evaluating stimulation discomfort and pain are proposed and issues related to user compliance are discussed. The article concludes with suggestions for future work focused on investigating the impacts of textile-based electrode parameters on comfort, convenience and ease of use.

  • 23.
    Euler, Luisa
    et al.
    University of Borås.
    Juthberg, Robin
    Karolinska institutet.
    Flodin, Johanna
    Karolinska institutet.
    Guo, Li
    University of Borås, Faculty of Textiles, Engineering and Business.
    Ackermann, Paul W
    Karolinska institutet.
    Persson, Nils-Krister
    University of Borås, Faculty of Textiles, Engineering and Business.
    Textile Electrodes: Influence of Electrode Construction and Pressure on Stimulation Performance in Neuromuscular Electrical Stimulation (NMES)2021In: Engineering in Medicine & Biology Society (EMBC), 2021 43rd Annual International Conference of the IEEE, IEEE, 2021, p. 1305-1308Conference paper (Refereed)
    Abstract [en]

    The major reason for preventable hospital death isvenous thromboembolism (VTE). Non-pharmacologicaltreatment options include electrical stimulation or compressiontherapy to improve blood flow in the extremities. Textileelectrodes offer potential to replace bulky devices commonlyused in this field, thereby improving the user compliance. In thiswork, the performance of dry and wet knitted electrodes incombination with pressure application to the electrode wasevaluated in neuromuscular electrical stimulation (NMES). Amotor point stimulation on the calf was performed on ninehealthy subjects to induce a plantarflexion and the requiredstimulation intensity as well as the perceived pain were assessed.The performance of the different electrode constructions wascompared and the influence of the pressure application wasanalysed. The results show that wet textile electrodes (0.9 %saline solution) perform significantly better than dry electrodes.However, opportunities were found for improving theperformance of dry textile electrodes by using an uneven surfacetopography in combination with an intermediate to highpressure application to the electrode (> 20 mmHg), e.g. by usinga compression stocking. Moreover, the smaller of the two testedelectrode areas (16 cm2; 32 cm2) appears to be favourable interms of stimulation comfort and efficiency.

  • 24.
    Ferreira, Javier
    et al.
    KTH, Medicinsk teknik.
    Pau, Iván
    Universidad Politecnica de Madrid.
    Lindecrantz, Kaj
    KTH, Medicinsk teknik.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. KTH-School of Technology and Health.
    A handheld and textile-enabled bioimpedance system for ubiquitous body composition analysis.: An initial functional validation2016In: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, no 99Article in journal (Refereed)
    Abstract [en]

    In recent years, many efforts have been made to promote a healthcare paradigm shift from the traditional reactive hospital-centered healthcare approach towards a proactive, patient-oriented and self-managed approach that could improve service quality and help reduce costs while contributing to sustainability. Managing and caring for patients with chronic diseases accounts over 75% of healthcare costs in developed countries. One of the most resource demanding diseases is chronic kidney disease (CKD), which often leads to a gradual and irreparable loss of renal function, with up to 12% of the population showing signs of different stages of this disease. Peritoneal dialysis and home haemodialysis are life-saving home-based renal replacement treatments that, compared to conventional in-center hemodialysis, provide similar long-term patient survival, less restrictions of life-style, such as a more flexible diet, and better flexibility in terms of treatment options and locations. Bioimpedance has been largely used clinically for decades in nutrition for assessing body fluid distributions. Moreover, bioimpedance methods are used to assess the overhydratation state of CKD patients, allowing clinicians to estimate the amount of fluid that should be removed by ultrafiltration. In this work, the initial validation of a handheld bioimpedance system for the assessment of body fluid status that could be used to assist the patient in home-based CKD treatments is presented. The body fluid monitoring system comprises a custom-made handheld tetrapolar bioimpedance spectrometer and a textile-based electrode garment for total body fluid assessment. The system performance was evaluated against the same measurements acquired using a commercial bioimpedance spectrometer for medical use on several voluntary subjects. The analysis of the measurement results and the comparison of the fluid estimations indicated that both devices are equivalent from a measurement performance perspective, allowing for its use on ubiquitous e-healthcare dialysis solutions.

  • 25.
    Gunnarsson, Emanuel
    Chalmers.
    Conductive Fabrics for Textile Electronic Interconnections and Capacitive Sensing - A Smart Textiles Perspective2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Smart textiles offer ways to integrate sensing and actuating abilities into textile structures found in garments, furniture and other applications such as filters, reinforcements, disposable products and others. A large part of the research being done on smart textiles concerns the possibilities for monitoring human health and wellbeing. In recent years, the research community has shown an increasing interest in measuring pressure using smart textiles. Observations in previous work on electrically conductive fabrics had shown that the conductivity in these fabrics was not always isotropic and the assumption was that the contact resistance between the conductive elements (often yarns) was the source of this anisotropy. The work done in connection to this thesis investigates two questions regarding smart textiles: first electrical interconnections and second electrical sensing. An algorithm and a device for measuring the contact resistance in woven samples were developed. Results from that work showed that the contact resistance of woven samples can be measured and that in the case of metallized yarns the contact resistance does not pose a problem for interconnection. For the sensing part two explanatory models for the capacitance of a functionalized spacer-fabric under compression were developed and tested on measured data. The results indicate that both models provide reasonable agreement with the data up to ca 50% compression.

  • 26. Gunnarsson, Emanuel
    et al.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Three-lead in vivo measurement method for determining the skin-electrode impedance of textile electrodes: A fast, accurate and easy-to-use measurement method suitable for characterization of textile electrodes2023In: Textile research journal, ISSN 0040-5175, E-ISSN 1746-7748Article in journal (Refereed)
    Abstract [en]

    The rise of interest in wearable sensing of bioelectrical signals conducted via smart textile systems over the past decades has resulted in many investigations on how to develop and evaluate such systems. All measurements of bioelectrical signals are done by way of electrodes. The most critical parameter for an electrode is the skin-electrode impedance. A common method for measuring skin-electrode impedance is the two-lead method, but it has limitations because it relies on assumptions of symmetries of the body impedance in different parts of the body as well as of the skin-electrode impedances. To address this, in this paper we present an easy-to-use and reliable three-lead in vivo method as a more accurate alternative. We aim to show that the in vivo three-lead method overcomes all such limitations. We aim at raising the awareness regarding the possibility to characterize textile electrodes using a correct, accurate and robust method rather than limited and sometimes inadequate and uninformative methods. The three-lead in vivo method eliminates the effect of body impedance as well as all other contact impedances during measurements. The method is direct and measures only the skin-electrode impedance. This method is suitable for characterization of skin-electrode interface of textile electrodes intended for both bioelectrical signals as well as for electrostimulation of the human body. We foresee that the utilization of the three-lead in vivo method has the potential to impact the further development of wearable sensing by enabling more accurate and reliable measurement of bioelectrical signals. 

    Download full text (pdf)
    fulltext
  • 27.
    Guo, Li
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sandsjö, Leif
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Scan To Knit - A smart textile platform for personalised prosthetic textiles2017In: Södra Älvsborgs Sjukhus (SÄS) Forsknings- och kvalitetsdagar 2017: Poster presented in the MedTech West exhibition, Borås, 2017, , p. 1Conference paper (Other academic)
    Download (pdf)
    Poster SÄS 2017-10-26--27
  • 28.
    Guo, Li
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Sandsjö, Leif
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Ortiz-Catalan, Max
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording2020In: Textile research journal, ISSN 0040-5175, E-ISSN 1746-7748, Vol. 90, no 2, p. 227-244, article id 0040517519858768Article in journal (Refereed)
    Abstract [en]

    This systematic review concerns the use of smart textiles enabled applications based on myoelectric activity. Electromyography (EMG) is the technique for recording and evaluating electric signals related to muscle activity (myoelectric). EMG is a well-established technique that provides a wealth of information for clinical diagnosis, monitoring, and treatment. Introducing sensor systems that allow for ubiquitous monitoring of health conditions using textile integrated solutions not only opens possibilities for ambulatory, long-term, and continuous health monitoring outside the hospital, but also for autonomous self-administration. Textile-based electrodes have demonstrated potential as a fully operational alternative to ‘standard’ Ag/AgCl electrodes for recording surface electromyography (sEMG) signals. As a substitute for Ag/AgCl electrodes fastened to the skin by taping or pre-gluing adhesive, textile-based electrodes have the advantages of being soft, flexible, and air permeable; thus, they have advantages in medicine and health monitoring, especially when selfadministration, real-time, and long-term monitoring is required. Such advances have been achieved through various smart textile techniques; for instance, adding functions in textiles, including fibers, yarns, and fabrics, and various methods for incorporating functionality into textiles, such as knitting, weaving, embroidery, and coating. In this work, we reviewed articles from a textile perspective to provide an overview of sEMG applications enabled by smart textile strategies. The overview is based on a literature evaluation of 41 articles published in both peer-reviewed journals and conference proceedings focusing on electrode materials, fabrication methods, construction, and sEMG applications. We introduce four textile integration levels to further describe the various textile electrode sEMG applications reported in the reviewed literature. We conclude with suggestions for future work along with recommendations for the reporting of essential benchmarking information in current and future textile electrode applications.

  • 29.
    Hafid, Abdelakram
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. University of Sciences and Technology Houari Boumediene.
    Benouar, Sara
    University of Borås, Faculty of Textiles, Engineering and Business.
    Kedir-Talha, Malika
    University of Sciences and Technology Houari Boumediene.
    Abtahi, Farhad
    Karolinska Institutet.
    Attari, Mokhtar
    University of Sciences and Technology Houari Boumediene.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Full Impedance Cardiography measurement device using Raspberry PI3 and System-on-Chip biomedical Instrumentation Solutions2017In: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208Article in journal (Refereed)
    Abstract [en]

    Impedance Cardiography (ICG) is a non-invasive method for monitoring cardiac dynamics using Electrical Bioimpedance (EBI) measurements. Since its appearance more than 40 years ago, ICG has been used for assessing hemodynamic parameters. This paper present a measurement system based on two System on Chip (SoC) solutions and Raspberry PI, implementing both a full 3-lead ECG recorder and an impedance cardiographer, for educational and research development purposes. Raspberry PI is a platform supporting Do-It-Yourself project and education applications across the world. The development is part of Biosignal PI, an open hardware platform focusing in quick prototyping of physiological measurement instrumentation. The SoC used for sensing cardiac biopotential is the ADAS1000, and for the EBI measurement is the AD5933. The recording were wirelessly transmitted through Bluetooth to a PC, where the waveforms were displayed, and hemodynamic parameters such as heart rate, stroke volume, ejection time and cardiac output were extracted from the ICG and ECG recordings. These results show how Raspberry PI can be used for quick prototyping using relatively widely available and affordable components, for supporting developers in research and engineering education. The design and development documents, will be available on www.BiosignalPI.com, for open access under a Non Commercial-Share A like 4.0 International License.

  • 30.
    Lieng, Phu
    et al.
    Chalmers.
    Yao, Jiaqi
    Chalmers.
    Candefjord, Stefan
    Chalmers.
    Kidborg, Stefan
    Medfield Diagnostics AB.
    Eriksson, Siw
    University of Borås, Faculty of Textiles, Engineering and Business.
    Wallgren, Pontus
    Chalmers.
    Sandsjö, Leif
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Design of Microwave-based devices for prehospital diagnosis of traumatic internal injuries2015In: Abstracts - Medicinteknikdagarna 2015, 13-14 oktober 2015, Uppsala Konsert & Kongress, 2015, p. 95-Conference paper (Other academic)
    Download (pdf)
    PosterMedicinteknikdagarna2015
  • 31.
    Lindell, Eva
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Tingsvik, Hanna
    University of Borås, Faculty of Textiles, Engineering and Business.
    Guo, Li
    University of Borås, Faculty of Textiles, Engineering and Business.
    Peterson, Joel
    University of Borås, Faculty of Textiles, Engineering and Business.
    3D Body Scan as Anthropometric Tool for Individualized Prosthetic Socks2021In: Autex Research JournalArticle in journal (Refereed)
    Abstract [en]

    Every year, approximately 3,000 people in Sweden undergo amputation of a body part. The use of a prosthesis can greatly improve the quality of life for these people. To improve the fi t and comfort of a prosthesis, a sock is used as an interface between the prosthesis socket and the stump. A three-dimensional (3D) body scanner can be used to take measurements that are used to produce individualized socks that improve fi t and comfort. The standardized method for taking measurements with a 3D body scanner often requires a standing position and hence a new scanning method is needed to improve the accessibility for 3D body scanning. This study aimed to create a scanning scenario and an algorithm for scanning amputation stumps for individualizing prosthesis socks for upper-body amputations. Vitronic VITUSSMART LC 3D Body Scanner was used in this study. The results show a seated position with arms slightly away from the body, scanned at 45° as the best. To measure the right upper arm and the left armpit, the best was to scan at a 315° angle. Paired t-tests showed no signifi cant differences compared with the 3D body scanner of traditional manual measurements. The proposed method exhibited good relative reliability and potential to facilitate the customization of prosthetic socks for amputees.

    Download full text (pdf)
    fulltext
  • 32. Löfhede, Johan
    et al.
    Eriksson, Siw
    University of Borås, Swedish School of Textiles.
    Sandsjö, Leif
    University of Borås, School of Engineering.
    Guo, Li
    University of Borås, Swedish School of Textiles.
    Thordstein, Magnus
    Monitoring of Brain Activity Using Textile Electrodes2012Conference paper (Other academic)
  • 33.
    Mohino-Herranz, Inma
    et al.
    University of Alcala.
    Gil-Pita, Roberto
    University of Alcala.
    Ferreira, Javier
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Rosa-Zurera, Manuel
    University of Alcala.
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones2015In: Sensors, E-ISSN 1424-8220, Vol. 15, no 10, p. 25607-25627Article in journal (Refereed)
  • 34.
    Mohino-Herranz, Inma
    et al.
    Department of Signal Theory and Communications, University of Alcala, 28805 Alcala de Henares, Madrid, Spain.
    Gil-Pita, Roberto
    Department of Signal Theory and Communications, University of Alcala, 28805 Alcala de Henares, Madrid, Spain.
    Rosa-Zurera, Manuel
    Department of Signal Theory and Communications, University of Alcala, 28805 Alcala de Henares, Madrid, Spain.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Clinical Science, Intervention an Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Department Biomedical Engineering, Karolinska University Hospital, 14186 Stockholm, Sweden.
    Activity recognition using wearable physiological measurements: Selection of features from a comprehensive literature study2019In: Sensors, E-ISSN 1424-8220, Vol. 19, no 24, article id 5524Article in journal (Refereed)
    Abstract [en]

    Activity and emotion recognition based on physiological signal processing in health care applications is a relevant research field, with promising future and relevant applications, such as health at work or preventive care. This paper carries out a deep analysis of features proposed to extract information from the electrocardiogram, thoracic electrical bioimpedance, and electrodermal activity signals. The activities analyzed are: neutral, emotional, mental and physical. A total number of 533 features are tested for activity recognition, performing a comprehensive study taking into consideration the prediction accuracy, feature calculation, window length, and type of classifier. Feature selection to know the most relevant features from the complete set is implemented using a genetic algorithm, with a different number of features. This study has allowed us to determine the best number of features to obtain a good error probability avoiding over-fitting, and the best subset of features among those proposed in the literature. The lowest error probability that is obtained is 22.2%, with 40 features, a least squares error classifier, and 40 s window length.

    Download full text (pdf)
    fulltext
  • 35.
    Sandsjö, Leif
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. MedTech West/SAFER.
    Candefjord, Stefan
    Signals and Systems, Chalmers.
    Sjöqvist, Bengt Arne
    Signals and Systems/Chalmers.
    Statistikinsamling och automatiskt olyckslarm för trafik med fyrhjulingar via en smartmobilplattform2016Report (Other academic)
    Download full text (pdf)
    Rapport
    Download full text (pdf)
    Sammanfattning (populär)
  • 36.
    Sandsjö, Leif
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare.
    Guo, Li
    University of Borås, Faculty of Textiles, Engineering and Business.
    Scan-to-knit - A platform for personalised smart textiles research and develoment with a special focus on prosthetics2018In: ISEK 2018 - The XXII Congress of the International Society of Electrophysiology and Kinesiology: University College Dublin, Dublin, Ireland, June 30th - 2nd July, 2018 / [ed] Madeleine Lowery, Dublin: University College Dublin Press, 2018, p. 222-223Conference paper (Refereed)
    Download full text (pdf)
    fulltext
    Download (pdf)
    Poster
  • 37.
    Sandsjö, Leif
    et al.
    University of Borås, School of Engineering.
    Löfhede, Johan
    University of Borås, School of Engineering.
    Eriksson, Siw
    University of Borås, Swedish School of Textiles.
    Guo, Li
    University of Borås, Swedish School of Textiles.
    Thordstein, Magnus
    EEG Measurements using Textile Electrodes2012Conference paper (Refereed)
    Download full text (pdf)
    FULLTEXT01
  • 38.
    Sandsjö, Leif
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. SAFER Vehicle and Traffic Safety Centre, Chalmers University of Technolgy, Gothenburg.
    Sjöqvist, Bengt Arne
    SAFER Vehicle and Traffic Safety Centre, Chalmers University of Technolgy, Gothenburg.
    Candefjord, Stefan
    SAFER Vehicle and Traffic Safety Centre, Chalmers University of Technolgy, Gothenburg.
    A Concept for Naturalistic Data Collection for Vulnerable Road Users Using a SmartPhone-based Platform2015Conference paper (Other academic)
    Abstract [en]

    This paper presents a smartphone-based platform for large-scale, low-cost, long-term naturalistic data collection aimed at vulnerable road users (VRUs). The approach taken is to collect naturalistic movement data from VRUs based on information from the embedded sensors in high-end smartphones. The Smartphone application, LogYard, developed in the current study, allows the recording of high quality data (tri-axial acceleration and rotation at 100 Hz plus GPS position and velocity each second). This way, large data quantities from ATV drivers’ movements during daily use in different use cases, can be transferred from a large number of users and accumulated in a cloud-based server for off-line analysis.

    Apart from the description on how data is recorded and managed in the smartphone-based platform, also a procedure on how to include participants to studies and how private integrity issues and informed consent can be handled from a distance is presented.

    By means of the presented smartphone based platform, large number of participants taking part in several parallel on-going studies can be easily administered. This makes the platform a powerful tool to use in large-scale, low-cost, long-term studies providing data from large groups of study participants.

    The information made available this way can be used to develop automatic crash notification (ACN) systems directed to VRUs based on identifying movements outside what is “normal” for bicyclists, mopedists, motorcyclists and ATV users.

  • 39. Schneegass, Stefan
    et al.
    Hassib, Mariam
    Zhou, Bo
    Cheng, Jingyuan
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Amft, Oliver
    Lukowicz, Paul
    Schmidt, Albrecht
    SimpleSkin: towards multipurpose smart garments2015In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, ACM Publications, 2015, p. 241-244Conference paper (Refereed)
  • 40.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Abtahi, Shirin
    Karolinska University Hospital.
    Abtahi, Farhad
    KTH-School of Technology and Health.
    Ellegård, Lars
    Sahlgrenska University Hospital.
    Johannsson, Gudmundur
    Sahlgrenska University Hospital.
    Bosaeus, Ingvar
    University of Gothenburg.
    Ward, Leigh
    University of Queensland.
    Slightly superior performance of bioimpedance spectroscopy over single frequency regression equations for assessment of total body water2015Conference paper (Refereed)
  • 41.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Abtahi, Shirin
    Karolinkska University Hospital.
    Abtahi, Farhad
    KTH-School of Technology and Health.
    Ellegård, Lars
    University of Gothenburg.
    Johannsson, Gudmundur
    University of Gothenburg.
    Bosaeus, Ingvar
    University of Gothenburg.
    Ward, Leigh C
    University of Queensland.
    Mean Expected Error in Prediction of Total Body Water.: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations.2015In: BioMed Research International, ISSN 2314-6133, E-ISSN 2314-6141, Vol. 2015Article in journal (Refereed)
  • 42.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Karolinska Institutet.
    Atefi, Seyed Reza
    University of Borås, Faculty of Textiles, Engineering and Business. Harvard Univsersity.
    Electrical bioimpedance enabling prompt intervention in traumatic brain injury2017In: SPIE Micro-and Nanotechnology Sensors, Systems, and Applications IX, 2017Conference paper (Refereed)
  • 43.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Atefi, Seyed Reza
    Harvard Univsersity.
    Tomner, Jens
    Karolinska Hospital.
    Kostulas, Konstantinos
    Karolinska Hospital.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Electrical Bioimpedance Spectroscopy on Acute Unilateral Stroke Patients: Initial Observations regarding Differences between Sides2015In: BioMed research international, Vol. 2015Article in journal (Refereed)
  • 44.
    Seoane, Fernando
    et al.
    University of Borås, School of Engineering.
    Ferreira, Javier
    University of Borås, School of Engineering.
    Buendia, Ruben
    University of Borås, School of Engineering.
    Lindecrantz, Kaj
    University of Borås, School of Engineering.
    Adaptive Frequency Distribution for Electrical Bioimpedance Spectroscopy Measurements2012Conference paper (Refereed)
    Abstract [en]

    This paper presents a novel frequency distribution scheme intended to provide more accurate estimations of Cole parameters. Nowadays a logarithmic frequency distribution is mostly used in Electrical Bioimpedance Spectroscopy (EBIS) applications. However it is not optimized following any criterion. Our hypothesis is that an EBIS signal contains more information where the variation of the measurement regarding the frequency is larger; and that there ought to be more measuring frequencies where there is more information. Results show that for EBIS data with characteristic frequencies up to 200 kHz the error obtained with both frequency distribution schemes is similar. However, for EBIS data with higher values of characteristic frequency the error produced when estimating the values from EBIS measurements using an adaptive frequency distribution is smaller. Thus it may usefull for EBIS applications with high values of characteristic frequency, e.g. cerebral bioimpedance.

  • 45.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Soroudi, Azadeh
    University of Borås, Faculty of Textiles, Engineering and Business.
    Abtahi, Farhad
    KTH, Medicinsk teknik.
    Lu, Ke
    KTH-School of Technology and Health.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Printed Electronics Enabling a Textile-friendly Interconnection between Wearable Measurement Instrumentation & Sensorized Garments2016Conference paper (Refereed)
  • 46.
    Seoane, Fernando
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Technology, Karolinska University Hospital, Stockholm, Sweden.
    Yang, Lin
    Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China.
    Dai, Meng
    Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China.
    Zhao, Zhangqi
    Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.
    Multidimensional physiology: novel techniques and discoveries with bioimpedance measurements2023In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 14, article id 1243850Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 47.
    Simic, M.
    et al.
    Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.
    Freeborn, T. J.
    Todd J. Freeborn Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA.
    Veletic, M.
    Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway; The Intervention Centre,Technology and Inno- 525 vation Clinic, Oslo University Hospital, Oslo, Norway.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden; Department of Clinical Physiology and the Department of Medical Technology, Karolinska University Hospital, Stockholm, Sweden.
    Stojanovic, G. M.
    Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.
    Parameter Estimation of the Single-Dispersion Fractional Cole-Impedance Model With the Embedded Hardware2023In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 23, no 12, p. 12978-12987Article in journal (Refereed)
    Abstract [en]

    Bioimpedance modeling with equivalent electrical circuits has an important role in various biomedical applications, as it facilitates understanding of underlying physical and electrochemical processes in applications such as body composition measurements and assessment of clinical conditions. However, the estimation of model parameter values is not a straightforward task, especially when complex circuits with fractional-order components [e.g., constant phase elements (CPEs)] are used. In this article, we propose a low-complexity method for parameter estimation of the Cole-impedance model suitable for low-cost embedded hardware (e.g., 8-bit microcontrollers). Our approach uses only the measured real and imaginary impedance, without any specific software package/toolbox, or initial values provided by the user. The proposed method was validated with synthetic (noiseless and noisy) data and experimental right-side, hand-to-foot bioimpedance data from a healthy adult participant. Moreover, the proposed method was compared in terms of accuracy with the recently published relevant work and commercial Electrical Impedance Spectroscopy software (Bioimp 2.3.4). The performance evaluation in terms of complexity (suitable for deployment for the microcontroller-based platform with 256 kB of RAM and 16 MHz clock speed), execution time (18 s for the dataset with 256 points), and cost (< 25) confirms the proposed method in regards to reliable bioimpedance processing using embedded hardware. 

  • 48.
    Vega-Barbas, Mario
    et al.
    Royal Institute of Technology.
    Pau, Iván
    Universidad Politecnica de Madrid.
    Augusto, Juan C
    Middlesex University.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. University of Borås, Faculty of Caring Science, Work Life and Social Welfare. Karolinska Institutet.
    Interaction patterns for smart spaces. A confident interaction design solution for pervasive sensitive IoT services2017In: IEEE Access, E-ISSN 2169-3536Article in journal (Refereed)
  • 49.
    Vega-Barbas, Mario
    et al.
    KTH-School of Technology and Health.
    Pau, Iván
    Universidad Politecnica de Madrid.
    Ferreira, Javier
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Lebis, Evelyn
    Seoane, Fernando
    University of Borås, Faculty of Caring Science, Work Life and Social Welfare. KTH-School of Technology and Health.
    Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children2015In: Journal of Sensors, ISSN 1687-725X, E-ISSN 1687-7268, article id 898047Article in journal (Refereed)
  • 50.
    Wollmann, Thomas
    et al.
    GECKO Institute, Heilbronn University, Heilbronn, Germany.
    Abtahi, Farhad
    KTH-School of Technology and Health.
    Eghdam, Abouzar
    Department of Learning, Informatics, Management and Ethics, Health Informatics Centre, Karolinska Institute.
    Seoane, Fernando
    University of Borås, Faculty of Textiles, Engineering and Business. KTH-School of Technology and Health.
    Lindecrantz, Kaj
    KTH-School of Technology and Health.
    Haag, Martin
    GECKO Institute, Heilbronn University, Heilbronn, Germany.
    Koch, Sabine
    Department of Learning, Informatics, Management and Ethics, Health Informatics Centre, Karolinska Institute.
    User-Centred Design and Usability Evaluation of a Heart Rate Variability Biofeedback Game2016In: IEEE Access, E-ISSN 2169-3536, Vol. PP, no 99, p. 1-1Article in journal (Refereed)
    Abstract [en]

    Background and objective: Reduced heart rate variability (HRV) is an indicatorof a malfunctioning autonomic nervous system. Resonant frequencybreathing is a potential non-invasive means of intervention for improvingthe balance of the autonomic nervous system and increasing HRV. However,such breathing exercises are regarded as boring and monotonous tasks.The use of gaming elements (gamification) or a full gaming experience is awell-recognised method for achieving higher motivation and engagement invarious tasks. However, there is limited documented knowledge on how todesign a game for breathing exercises. In particular, the influence of additionalinteractive elements on the main course of training has not yet beenexplored. In this study, we evaluated the satisfaction levels achieved usingdifferent game elements and how disruptive they were to the main task, i.e.,paced breathing training.

    Methods: An Android flight game was developed with three game modes thatdiffer in the degrees of multitasking they require. Design, development and evaluation were conducted using a user-centred approach, including contextanalysis, the design of game principle mock-ups, the selection of game principlesthrough a survey, the design of the game mechanics and GUI mock-up,icon testing and the performance of a summative study through user questionnairesand interviews. A summative evaluation of the developed gamewas performed with 11 healthy participants (ages 40-67) in a controlled setting.Results: The results confirm the potential of video games for motivatingplayers to engage in HRV biofeedback training. The highest training performanceon the first try was achieved through pure visualisation rather thanin a multitasking mode. Players had higher motivation to play the morechallenging game and were more interested in long-term engagement.Conclusion: A framework for gamified HRV biofeedback research is presented.It has been shown that multitasking has considerable influence onHRV biofeedback and should be used with an adaptive challenge level.

12 1 - 50 of 53
CiteExportLink to result list
Permanent link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf