How fast can you comfortably travel between two points A and B? This question is formulated as a minimization problem of a functional where the discomfort is quantified in terms of the integral of the square of the acceleration between A and B. The problem is solved in terms of the corresponding Euler-Lagrange equation and approximately using a direct variational approach based on trial functions and Ritz optimization. The main purpose of the analysis is to introduce undergraduate students to variational calculus in an interesting and pedagogical way.
We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
In this paper we provide quenched central limit theorems, large deviation principles and local central limit theorems for random U(1) extensions of expanding maps on the torus. The results are obtained as special cases of corresponding theorems that we establish for abstract random dynamical systems. We do so by extending a recent spectral approach developed for quenched limit theorems for expanding and hyperbolic maps to be applicable also to partially hyperbolic dynamics.
We analyze the eigenvalue problem for the semiclassical Dirac (or Zakharov–Shabat) operator on the real line with general analytic potential. We provide Bohr–Sommerfeld quantization conditions near energy levels where the potential exhibits the characteristics of a single or double bump function. From these conditions we infer that near energy levels where the potential (or rather its square) looks like a single bump function, all eigenvalues are purely imaginary. For even or odd potentials we infer that near energy levels where the square of the potential looks like a double bump function, eigenvalues split in pairs exponentially close to reference points on the imaginary axis. For even potentials this splitting is vertical and for odd potentials it is horizontal, meaning that all such eigenvalues are purely imaginary when the potential is even, and no such eigenvalue is purely imaginary when the potential is odd.
We give some topological characteristics of the coamoeba of a generic k-dimensional affine space and two stronger versions, specific for the affine case, of a result by Nisse, Sottile and the author. We also give topological and partly algebraical characterizations of the amoeba and coamoeba in some special cases: k=n-1, k=1 and, when n is even, k=n/2, in the last case with a certain emphasis on the example n=4.
We consider a class of weighted harmonic functions in the open upper half-plane known as α-harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case (α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case (α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin.