Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Method of Estimating Absolute Entropy of Municipal Solid Waste
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0003-0037-3555
2016 (English)In: World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, E-ISSN 2010-3778, Vol. 10, no 7, 689-694 p.Article in journal (Refereed) Published
Abstract [en]

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3%  C 95.1%, 0.0%  H  14.3%, 0.0%  O  71.1%, 0.0  N  66.7%, 0.0%  S  42.1%, 0.0%  Cl  89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Place, publisher, year, edition, pages
2016. Vol. 10, no 7, 689-694 p.
Keyword [en]
Absolute entropy, irreversibility, municipal solid waste, waste-to-energy
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:hb:diva-10794OAI: oai:DiVA.org:hb-10794DiVA: diva2:975044
Available from: 2016-09-28 Created: 2016-09-28 Last updated: 2017-05-04Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Eboh, Francis ChinweubaAhlström, PeterRichards, Tobias
By organisation
Faculty of Textiles, Engineering and Business
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 450 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf