Biopolymers are becoming increasingly popular and may help reduce oil dependency. As a result, industries’ attentions have been directed towards polylactic acid (PLA) which combines the advantages of being renewable and biodegradable resources at the same time. The upward trend of the bioplastics and biocomposites usage among consumers could have great consequence for the recycled plastics industry in the next few decades. While the mechanical recycling of many of the traditional, petro-based polymers have been studied in detail, bio-based polymers still need to be better characterized. The mechanical recycling of neat PLA has previously studied and tests show that it is possible to process PLA several times without significant loss of mechanical properties. However, commercial plastics are often used with some kind of filler. Due to the low production cost of chalk (mainly consisting of CaCO3) it is often added to commercial polymers. PLA can be filled with chalk and other fillers in order to improve the toughness and lowering the cost. The purpose of this project was to investigate the mechanical recycling of PLA compounded with chalk. PLA was compounded with 30 wt-% chalk and 5 wt-% plasticizer using a twin screw extruder. The mechanical recycling was simulated by multiple extrusion. Samples for mechanical testing were prepared by compress molding. The prepared compound was recycled up to 6 times by multiple extrusion. The mechanical and thermal properties were characterized after each cycle by TGA, DSC, DMTA, FTIR and tensile tests.