Research efforts in the areas of Electrical Bioimpedance (EBI) and textile materials with conductive properties have contributed to the proliferation of research projects aiming to test the feasibility of implementing Textile-enabled instrumentation for performing EBI measurements. Most of the work done has been focused on the electrical characterization of the Textrodes (textile electrodes) and on spectroscopy applications of EBI like early detection of Cardiogenic Pulmonary Edema. In this work, a garment composed of two belts containing Textrodes made of conductive Velcro, loops-type, has been manufactured. Both, the abdomen and the neck belts, have four Textrodes connected through a conductive fabric Technik Tex P-130+ Shieldex fabric in pairs. This way, a tetrapolar EBI measurement between the neck and the chest is performed, implementing a typical band electrode arrangement [1] approach with the two belts. Using a custom-made device Respimon that measures the electrical cardiac activity with a 1-lead ECG and a tetrapolar EBI measurement at 50kHz of a portion of the body, and the Textrode garment, the ICG and ECG signals have been recorded and compared with the recordings obtained with Ag/AgCl electrodes placed in the same positions. The resemblance of the ICG and ECG signals obtained with both the Ag/AgCl electrodes and the Textrode garment confirms the feasibility of using Textrodes to perform measurements of cardiac impedance. There are several useful hemodynamic parameters that can be extracted from the ICG signal in combination with the ECG signal. The availability of a Textrode garment, easy to wear and that produces reliable ICG measurements, would contribute to present ICG monitoring as feasible technology for implementing personalized healthcare monitoring systems, especially for e-health applications of heart failure patients management.