A sequential two stages thermophilic fermentation of fruit waste i.e. orange, banana, apple, grape, melon to produce biofuels i.e. biohydrogen (BioH2) and biomethane (BioCH4) was investigated. In the first stage, fermentative BioH2 from each waste was successfully carried out without any methane being detected. Among the wastes, apple generated more gas with cumulative BioH2 yield (CHY) as 19.91 mmol/g VS (90% of theoretical value), while the lowest one resulted from melon (8.14 mmol/g VS or 36.8%). In the second stage, fermentative BioCH4 of residual liquid from the first stage was achieved successfully for banana, VEMF, apple, grape, melon, and orange with the cumulative BioCH4 yield (CHY) as 10.62, 14.23, 15.88, 16.26, 16.74, and 18.50 mmol CH4/g VSadded respectively. It was also showed from chemical oxygen demand (COD) measurement that COD removal efficiency achieved significantly high from 48% up to 60% for all the waste except orange which was only 16.7%. It was presumed that orange contained difficult-to-degrade materials such as limonene. In fact, fermentative BioH2 of orange in higher limonene concentration at 18 mg/l was totally inhibited. A simulation of potential generated energy (PGE) from the fruits waste being treated through this method was carried out based on the quantity of worldwide harvested fruits in 2009 (FAO UN), in consideration that 10% of the fruits were wasted. It is surprisingly understood that each of the fruits waste can deliver more than 64 MWh of electricity.