In this paper, several demands placed on concept description algorithms are identified and discussed. The most important criterion is the ability to produce compact rule sets that, in a natural and accurate way, describe the most important relationships in the underlying domain. An algorithm based on the identified criteria is presented and evaluated. The algorithm, named Chipper, produces decision lists, where each rule covers a maximum number of remaining instances while meeting requested accuracy requirements. In the experiments, Chipper is evaluated on nine UCI data sets. The main result is that Chipper produces compact and understandable rule sets, clearly fulfilling the overall goal of concept description. In the experiments, Chipper's accuracy is similar to standard decision tree and rule induction algorithms, while rule sets have superior comprehensibility.