Textile technology has gone through a remarkable development in the field of Smart Textiles and more specifically in the area of conductive fabrics and yarns. Important research efforts have been done worldwide and especially in Europe, where the EUcommission has supported several research projects in the near past e.g. BIOTEX IST-2004- 016789, CONTEXT IST- 2004-027291 and MyHeart IST-2002-507816. As a result of such worldwide R&D efforts, textile sensors and electrodes are currently available commercially. Nowadays there are even consumer products with textile sensing technology for heart rate monitoring integrated in the apparel e.g. Adistar Fusion T-shirt from Adidas or the Numetrex’s Cardio shirt. Since one of the main areas of focus where R&D efforts have been concentrated is Personalized Healthcare Monitoring (PHM) and the fact that most of the efforts developing textile sensors have been focused on developing electrodes for biopotential signals recording, it is natural that the main targeted application has been the acquisition of electrical biopotentials and especially monitoring the ElectroCardioGraphic activity, but also other types of textile sensors have been investigated e.g. textile stretching sensor (Mattmann et al., 2008). Nowadays textile-enable stretch sensors are available commercially like the one manufactured by Merlin Systems. While the application of this type of sensor aims at other applications than biopotential recordings, an important area of application of stretch sensors still is PHM and fitness. This type of sensors can be used for respiration monitoring or plethysmography applications.