Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Novel lightweight and highly thermally insulative silica aerogel-doped poly (vinyl chloride)-coated fabric composite
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business. (Resource Recovery)ORCID iD: 0000-0003-4887-2433
2015 (English)In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 34, no 19, 1581-1592 p.Article in journal (Refereed) Published
Abstract [en]

Novel lightweight and highly thermal insulative aerogel-doped poly(vinyl chloride)-coated fabric composites wereprepared on woven fabrics made of polyester fibres using knife coating method, and their performances were comparedwith neat composite. The composites were prepared by incorporating a commercial aerogel to a ‘green’ poly(vinylchloride) (PVC) plastisol. The effect of aerogel-content, thermal insulating property, thermal degradation, surface characteristics,tensile and physical properties of the composites were investigated. Results revealed that aerogel couldreduce thermal conductivity, density and hydrophilicity of the composites dramatically without significant decrease inother properties. Experimental results showed that thermal insulation properties were enhanced by 26% (from 205 to152 mW/m-K), density decreased by 17% (from 1.132 to 0.941 g/cm3) and hydrophobicity increased by 16.4% (from76.02 to 88.671.48) with respect to the unmodified coated fabric. Analyses proved that composite with 3% aerogel isthe lightest by weight, while 4% showed the highest thermal insulation. The results showed that 4% is the criticalpercentage, and preparation of composites with aerogel content higher than 4% has limitations with the given formulationdue to high viscosity of plastisol. The prepared composite has potential applications in many fields such asdevelopment of textile bioreactors for ethanol/biogas production from waste materials, temporary houses and tents,facade coverings, container linings and tarpaulins. The prepared composite can be considered ‘green’ due to usage of anon-phthalate environment-friendly plasticiser.

Place, publisher, year, edition, pages
2015. Vol. 34, no 19, 1581-1592 p.
Keyword [en]
Poly(vinyl chloride)-coated fabric, silica aerogel composite, thermal insulation, lightweight PVC, thermal conductivity coefficient, Knudsen effect, transient plane source, environment-friendly (green) poly(vinyl chloride)
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-3733OAI: oai:DiVA.org:hb-3733DiVA: diva2:877297
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2016-01-21

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jabbari, MostafaÅkesson, DanSkrifvars, MikaelTaherzadeh, Mohammad J
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Journal of reinforced plastics and composites (Print)
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

Total: 840 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf