Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells.
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business.
University of Borås, Faculty of Textiles, Engineering and Business. (Resource Recovery)ORCID iD: 0000-0003-4887-2433
2015 (English)In: Membranes, E-ISSN 2077-0375, Vol. 5, no 4Article in journal (Refereed) Published
Abstract [en]

This study focused on the possibility of improving fermentative hydrogen and methane production from an inhibitory fruit-flavored medium using polyvinylidene fluoride (PVDF) membrane-encapsulated cells. Hexanal, myrcene, and octanol, which are naturally produced in fruits such as apple, grape, mango, orange, strawberry, and plum, were investigated. Batch and semi-continuous fermentation processes at 55 °C were carried out. Presence of 5 g/L of myrcene, octanol, and hexanal resulted in no methane formation by fermenting bacteria, while encapsulated cells in the membranes resulted in successful fermentation with 182, 111, and 150 mL/g COD of methane, respectively. The flavor inhibitions were not serious on hydrogen-producing bacteria. With free cells in the presence of 5 g/L (final concentration) of hexanal-, myrcene-, and octanol-flavored media, average daily yields of 68, 133, and 88 mL/g COD of hydrogen, respectively, were obtained. However, cell encapsulation further improved these hydrogen yields to 189, 179, and 198 mL/g COD. The results from this study indicate that the yields of fermentative hydrogen and methane productions from an inhibitory medium could be improved using encapsulated cells.

Place, publisher, year, edition, pages
2015. Vol. 5, no 4
Keywords [en]
encapsulated bacteria, fruit flavors, membrane, hydrogen, methane, inhibition
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-3726DOI: 10.3390/membranes5040616ISI: 000367793700007PubMedID: 26501329Scopus ID: 2-s2.0-84944716858OAI: oai:DiVA.org:hb-3726DiVA, id: diva2:877290
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2024-04-30Bibliographically approved
In thesis
1. Fermentative hydrogen and methane productions using membrane bioreactors
Open this publication in new window or tab >>Fermentative hydrogen and methane productions using membrane bioreactors
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The role of energy as a stimulant for economic growth and environmental sustainabilityof any nation has made the focus on green fuels, including fermentative hydrogen (bioH2) andmethane (bioCH4), to be a priority for the World’s policy makers. Nigeria, as the most populousAfrican country, with worsening energy crisis, can benefit from the introduction of the bioH2 andbioCH4 technologies into the country’s energy mix, since such technologies have the potential ofgenerating energy from organic wastes such as fruit waste.Fruit waste was studied in detail in this work because of its great economic andenvironmental potential, as large quantities of the wastes (10–65% of raw fruit) are generatedfrom fruit consumption and processing. Meanwhile, bioH2 and bioCH4 productions involvinganaerobic microorganisms in direct contact with organic wastes have been observed to result insubstrate and product inhibitions, which reduce the gas yields and limit the application of thetechnologies on an industrial scale. For example, in this study, the first experimental work todetermine the effects of hydraulic retention times and fruit mixing on bioH2 production fromsingle and mixed fruits revealed the highest cumulative bioH2 yield to be equivalent to 30% ofthe theoretical yield. However, combining the fermentation process with the application ofmembrane encapsulated cells and membrane separation techniques, respectively, could reducesubstrate and product inhibitions of the microorganisms. This study, therefore, focused on theapplication of membrane techniques to enhance the yields of bioH2 and bioCH4 productions fromthe organic wastes.The second experimental work which focused on reduction of substrate inhibition,involved the investigation of the effects of the PVDF membrane encapsulation techniques on thebioH2 and bioCH4 productions from nutrient media with limonene, myrcene, octanol and hexanalas fruit flavours. The results showed that membrane encapsulated cells produced bioCH4 fasterand lasted longer, compared to free cells in limonene. Also, about 60% membrane protectiveeffect against myrcene, octanol and hexanal inhibitions was obtained. Regarding bioH2production, membrane encapsulated cells, compared to free cells, produced higher average dailyyields of 94, 30 and 77% with hexanal, myrcene and octanol as flavours, respectively. The finalpart of the study, which was aimed at reducing product inhibition, involved the study of theeffects of membrane permeation of volatile fatty acids (VFAs) on the bioreactor hydrodynamicsin relation to bioH2 production. The investigation revealed that low transmembrane pressure of104Pa was required to achieve a 3L h-1m-2 critical flux with reversible fouling mainly due to cakelayer formation, and bioH2 production was also observed to restart after VFAs removal.The results from this study suggest that membrane-based techniques could improve bioH2and bioCH4 productions from fermentation media with substrate and product inhibitions.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2015. p. 72
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 72
Keywords
Encapsulation, Inhibition, hydrodynamics, hydrogen, methane, fruit flavour, Membrane bioreactor
National Category
Environmental Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-671 (URN)978-91-87525-73-5 (ISBN)978-91-87525-74-2 (ISBN)
Public defence
2015-10-28, E310, Allegatan 1, Borås, 10:00 (English)
Available from: 2015-09-21 Created: 2015-08-27 Last updated: 2015-12-18Bibliographically approved

Open Access in DiVA

fulltext(342 kB)600 downloads
File information
File name FULLTEXT01.pdfFile size 342 kBChecksum SHA-512
7ef507f184c594315242dcc6d49293ed365c211bde43d98d1f1173f9fb2b0b9c818a207064498364ae7e09f71afac6ffef52a63845d89669e44de6008fe19e18
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Akinbomi, JuliusWikandari, RachmanTaherzadeh, Mohammad J

Search in DiVA

By author/editor
Akinbomi, JuliusWikandari, RachmanTaherzadeh, Mohammad J
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Membranes
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 600 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1002 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf