Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computational studies of metal-carbon nanotube interfaces for regrowth and electronic transport
University of Borås, School of Engineering.
Show others and affiliations
2009 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 3, p. 1117-1120Article in journal (Refereed) Published
Abstract [en]

First principles and tight binding Monte Carlo simulations show that junctions between single-walled carbon nanotubes (SWNTs) and nickel clusters are on the cluster surface, and not at subsurface sites, irrespective of the nanotube chirality, temperature, and whether the docking is gentle or forced. Gentle docking helps to preserve the pristine structure of the SWNT at the metal interface, whereas forced docking may partially dissolve the SWNT in the cluster. This is important for SWNT-based electronics and SWNT-seeded regrowth.

Place, publisher, year, edition, pages
American Chemical Society , 2009. Vol. 9, no 3, p. 1117-1120
Keywords [en]
kolnanorör
Keywords [sv]
datormodellering, Energi och material
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:hb:diva-2595DOI: 10.1021/nl8036245Local ID: 2320/5211OAI: oai:DiVA.org:hb-2595DiVA, id: diva2:870689
Available from: 2015-11-13 Created: 2015-11-13 Last updated: 2017-11-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Börjesson, AndersBolton, Kim

Search in DiVA

By author/editor
Börjesson, AndersBolton, Kim
By organisation
School of Engineering
In the same journal
Nano letters (Print)
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 215 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf