Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-combustion of animal waste in a commercial waste-to-energy BFB boiler
University of Borås, School of Engineering.
University of Borås, School of Engineering.
2013 (English)In: Energies, E-ISSN 1996-1073, Vol. 6, no 12, p. 6170-6187Article in journal (Refereed) Published
Sustainable development
The content falls within the scope of Sustainable Development
Abstract [en]

Co-combustion of animal waste, in waste-to-energy boilers, is considered a method to produce both heat and power and to dispose of possibly infected animal wastes. This research conducted full-scale combustion tests to identify the impact of changed fuel composition on a fluidized-bed boiler. The impact was characterized by analyzing the deposit formation rate, deposit composition, ash composition, and emissions. Two combustion tests, denoted the reference case and animal waste case, were performed based on different fuel mixes. In the reference case, a normal solid waste fuel mix was combusted in the boiler, containing sorted industry and household waste. In the animal waste case, 20 wt% animal waste was added to the reference fuel mix. The collected samples, comprising sampling probe deposits, fuel mixes, bed ash, return sand, boiler ash, cyclone ash and filter ash, were analyzed using chemical fractionation, SEM-EDX and XRD. The results indicate decreased deposit formation due to animal waste co-combustion. SEM-EDX and chemical fractionation identified higher concentrations of P, Ca, S, and Cl in the bed materials in the animal waste case. Moreover, the risk of bed agglomeration was lower in the animal waste case and also a decreased rate of NOx and SO2 emissions were observed.

Place, publisher, year, edition, pages
M D P I AG , 2013. Vol. 6, no 12, p. 6170-6187
Keywords [en]
bubbling fluidized bed (BFB) boiler, animal waste, MSW, deposit, ash, Resursåtervinning
National Category
Engineering and Technology Chemical Engineering
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-1792DOI: 10.3390/en6126170ISI: 000330290600003Local ID: 2320/13279OAI: oai:DiVA.org:hb-1792DiVA, id: diva2:869870
Available from: 2015-11-13 Created: 2015-11-13 Last updated: 2023-08-28Bibliographically approved
In thesis
1. Ash Behavior in Fluidized-Bed Combustion and Gasification of Biomass and Waste Fuels: Experimental and Modeling Approach
Open this publication in new window or tab >>Ash Behavior in Fluidized-Bed Combustion and Gasification of Biomass and Waste Fuels: Experimental and Modeling Approach
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Over the past few decades, a growing interest in the thermal conversion of alternative fuels such as biomass and waste-derived fuels has been observed among the energy-producing companies. Apart from meeting the increasing demand for sustainable heat and power production, other advantages such as reducing global warming and ameliorating landfilling issues have been identified. Among the available thermal conversion technologies, combustion in grate-fired furnaces is by far the most common mode of fuel conversion. In recent years, Fluidized-Bed (FB) technologies have grown to become one of the most suitable technologies for combustion and gasification of biomass and waste-derived fuels.In spite of the benefits, however, some difficulties are attributed to the thermal conversion of the alternative fuels. Ash-related issues could be a potential problem, as low-grade fuels may include considerable concentrations of ash-forming elements such as K, Na, S, Ca, Mg, P, Si and Cl. These elements undergo many undesirable chemical and physical transformations during the thermal conversion, and often cause operational problems such as deposition-related issues, slag formation in furnaces, corrosion of the heat transfer surfaces, and bed agglomeration of the fluidized-beds. Ash-related problems in the utility boilers are a major concern that may result in decreased efficiency, unscheduled outages, equipment failures, increased cleaning and high maintenance costs.This thesis investigated the ash behavior and ash-related problems in two different FB conversion systems: a Bubbling Fluidized-Bed (BFB) boiler combusting solid waste, and a Dual Fluidized-Bed (DFB) gasifier using biomass as feedstock. Full-scale measurements, chemical analysis of fuel and ash, as well as thermodynamic equilibrium modeling have been carried out for the BFB boiler (Papers I-IV), to investigate the impact of reduced-bed temperature (RBT) and also co-combustion of animal waste (AW) on the ash transformation behavior and the extent of ash-related issues in the boiler. For the DFB gasifier (Paper V), a thermodynamic equilibrium model was developed to assess the risk of bed agglomeration when forest residues are used as feedstock.The experimental results showed that the RBT and AW co-combustion could decrease or even resolve the ash-related issues in the BFB boiler, resulting in a lower deposit-growth rate in the superheater region, eliminating agglomerates, and a less corrosive deposit (in RBT case). Thermodynamic equilibrium modeling of the BFB boiler gave a better understanding of the ash transformation behavior, and also proved to be a reliable tool for predicting the risk of bed agglomeration and fouling. The modeling of the DFB gasifier indicated a low risk of bed agglomeration using the forest residues as feedstock and olivine as bed material, which was in good agreement following the observations in a full-scale DFB gasifier.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2016
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 78
Keywords
Fluidized-bed, combustion, gasification, waste-derived fuels, biomass, ash-related problems, deposit, fouling, slagging, bed agglomeration, thermodynamic equilibrium modeling
National Category
Environmental Biotechnology
Identifiers
urn:nbn:se:hb:diva-9563 (URN)978-91-88269-14-0 (ISBN)978-91-88269-15-7 (ISBN)
Public defence
2016-06-09, E310, University of Borås, Allégatan 1, Borås, 10:00 (English)
Available from: 2016-05-11 Created: 2016-04-08 Last updated: 2017-05-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.mdpi.com/1996-1073/6/12/6170/pdf

Authority records

Moradian, FarzadPettersson, AnitaRichards, Tobias

Search in DiVA

By author/editor
Moradian, FarzadPettersson, AnitaRichards, Tobias
By organisation
School of Engineering
In the same journal
Energies
Engineering and TechnologyChemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 376 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf