First principles and molecular mechanics methods have been used to study poly(vinylidene fluoride)—single wall carbon nanotube systems. First principles calculations (Møller-Plesset second order perturbation theory and density functional theory with B3LYP exchange correlation functional with and without dispersion correction) using short poly(vinylidene fluoride) segments and short hydrogen-capped single wall carbon nanotubes show that the polymer segments prefer to have the β-rather than the β-conformation both in the absence and presence of the single wall carbon nanotube. The lowest energy structure is obtained when the poly(vinylidene fluoride) has an β-conformation and is located parallel to the single wall carbon nanotube wall. In contrast to the Dreiding and Universal force fields, the COMPASS force field predicts the structures containing the β-conformation of poly(vinylidene fluoride) to be the lowest in energy in agreement with first principles results. The COMPASS force field was consequently used in preliminary studies of a longer poly(vinylidene fluoride) chain and a longer single wall carbon nanotube using molecular dynamics.