Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biogas production by encased bacteria in synthetic membranes: Protective effects in toxic media and high loading rates
University of Borås, School of Engineering. (Biotechnology)
University of Borås, School of Engineering. (Biotechnology)
University of Borås, School of Engineering. (Biotechnology)ORCID iD: 0000-0003-4887-2433
2013 (English)In: Environmental technology, ISSN 0959-3330, E-ISSN 1479-487X, Vol. 34, no 13-14, 2077-2084 p.Article in journal (Refereed) Published
Sustainable development
The content falls within the scope of Sustainable Development
Abstract [en]

A bioreactor including encased digesting bacteria for biogas production was developed, and its performance in toxic media and under high organic loading rates (OLRs) was examined and compared with traditional digestion reactors. The bacteria (3 g) were encased and sealed in 3 × 6cm 2 PVDF (polyvinylidene fluoride) membranes with a pore size of 0.1 μ m, and then several sachets were placed in the reactors. They were then examined in toxic medium containing up to 3% limonene as a model inhibitor in batch reactors, and OLRs of up to 20 g COD / L.day in semi-continuous digestions. The free and encased cells with an identical total bacterial concentration of 9 g in a medium containing 2% limonene produced at most 6.56 and 23.06 mL biogas per day, respectively. In addition, the digestion with free cells completely failed at an OLR of 7.5 g COD / L.day, while the encased cells were still fully active with a loading of 15 g COD / L.day.

Place, publisher, year, edition, pages
Tailor & Francis , 2013. Vol. 34, no 13-14, 2077-2084 p.
Keyword [en]
Resource Recovery
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-1649DOI: 10.1080/09593330.2013.770555ISI: 000325389900038PubMedID: 24350461Local ID: 2320/12929OAI: oai:DiVA.org:hb-1649DiVA: diva2:869718
Available from: 2015-11-13 Created: 2015-11-13 Last updated: 2016-07-14Bibliographically approved
In thesis
1. Fermentative hydrogen and methane productions using membrane bioreactors
Open this publication in new window or tab >>Fermentative hydrogen and methane productions using membrane bioreactors
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The role of energy as a stimulant for economic growth and environmental sustainabilityof any nation has made the focus on green fuels, including fermentative hydrogen (bioH2) andmethane (bioCH4), to be a priority for the World’s policy makers. Nigeria, as the most populousAfrican country, with worsening energy crisis, can benefit from the introduction of the bioH2 andbioCH4 technologies into the country’s energy mix, since such technologies have the potential ofgenerating energy from organic wastes such as fruit waste.Fruit waste was studied in detail in this work because of its great economic andenvironmental potential, as large quantities of the wastes (10–65% of raw fruit) are generatedfrom fruit consumption and processing. Meanwhile, bioH2 and bioCH4 productions involvinganaerobic microorganisms in direct contact with organic wastes have been observed to result insubstrate and product inhibitions, which reduce the gas yields and limit the application of thetechnologies on an industrial scale. For example, in this study, the first experimental work todetermine the effects of hydraulic retention times and fruit mixing on bioH2 production fromsingle and mixed fruits revealed the highest cumulative bioH2 yield to be equivalent to 30% ofthe theoretical yield. However, combining the fermentation process with the application ofmembrane encapsulated cells and membrane separation techniques, respectively, could reducesubstrate and product inhibitions of the microorganisms. This study, therefore, focused on theapplication of membrane techniques to enhance the yields of bioH2 and bioCH4 productions fromthe organic wastes.The second experimental work which focused on reduction of substrate inhibition,involved the investigation of the effects of the PVDF membrane encapsulation techniques on thebioH2 and bioCH4 productions from nutrient media with limonene, myrcene, octanol and hexanalas fruit flavours. The results showed that membrane encapsulated cells produced bioCH4 fasterand lasted longer, compared to free cells in limonene. Also, about 60% membrane protectiveeffect against myrcene, octanol and hexanal inhibitions was obtained. Regarding bioH2production, membrane encapsulated cells, compared to free cells, produced higher average dailyyields of 94, 30 and 77% with hexanal, myrcene and octanol as flavours, respectively. The finalpart of the study, which was aimed at reducing product inhibition, involved the study of theeffects of membrane permeation of volatile fatty acids (VFAs) on the bioreactor hydrodynamicsin relation to bioH2 production. The investigation revealed that low transmembrane pressure of104Pa was required to achieve a 3L h-1m-2 critical flux with reversible fouling mainly due to cakelayer formation, and bioH2 production was also observed to restart after VFAs removal.The results from this study suggest that membrane-based techniques could improve bioH2and bioCH4 productions from fermentation media with substrate and product inhibitions.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2015. 72 p.
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 72
Keyword
Encapsulation, Inhibition, hydrodynamics, hydrogen, methane, fruit flavour, Membrane bioreactor
National Category
Environmental Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-671 (URN)978-91-87525-73-5 (ISBN)978-91-87525-74-2 (ISBN)
Public defence
2015-10-28, E310, Allegatan 1, Borås, 10:00 (English)
Available from: 2015-09-21 Created: 2015-08-27 Last updated: 2015-12-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Youngsukkasem, S.Akinbomi, J.Taherzadeh, M.J.
By organisation
School of Engineering
In the same journal
Environmental technology
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 247 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf