Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of water absorption on mechanical properties of soybean oil thermosets reinforced with natural fibers
University of Borås, School of Engineering.
University of Borås, School of Engineering.
University of Borås, School of Engineering.
2012 (English)In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 31, no 18, p. 1191-1200Article in journal (Refereed) Published
Sustainable development
The content falls within the scope of Sustainable Development
Abstract [en]

Natural fiber composites are known to absorb more water than glass fiber reinforced composites. In this study, hybrid natural fiber composites were prepared by combining different fiber reinforcements, and both the water absorption and the mechanical properties were studied. Compression molding technique was used to manufacture composite laminates from a bio-based resin (acrylated epoxidized soybean oil) and natural fibers: non-woven and woven jute, non-woven regenerated cellulose mat (Lyocell and viscose), and woven glass fiber. The composite laminates were cured at 160–170 C and 40 bar, with a fiber content of 40 wt%. We investigated effect of pretreatment of regenerated cellulose fiber using 4% NaOH solution. The gravimetric water absorption was tested by exposure to water for 10 days. Specimens were cut from composites with laser-cutting technique according to ISO standards, and tested for tensile, flexural, and impact strength. To determine the influence of water absorption on the mechanical properties, specimens were immersed in distilled water for 10 days before testing. As a reference, dry specimens were tested. The results showed that water absorption was reduced by producing hybrid composites with jute fibers, glass fiber, and Lyocell fiber. The tensile, flexural, and impact properties were improved by inclusion of glass fiber and Lyocell in the composite. The tensile and flexural properties of natural fiber reinforced composites were mostly affected by the influence of water, but this was improved considerably by hybridization with glass and Lyocell fibers. The viscoelastic properties of the manufactured composites and hybrid composites were studied using dynamic mechanical thermal analysis.

Place, publisher, year, edition, pages
Sage Publications Ltd. , 2012. Vol. 31, no 18, p. 1191-1200
Keywords [en]
Soybean oil, thermoset, composite, regenerated cellulose, Resursåtervinning
National Category
Materials Engineering
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-1484DOI: 10.1177/0731684412455257ISI: 000307722800001Local ID: 2320/11916OAI: oai:DiVA.org:hb-1484DiVA, id: diva2:869541
Available from: 2015-11-13 Created: 2015-11-13 Last updated: 2017-10-31Bibliographically approved
In thesis
1. Properties and performance of regenerated cellulose thermoset biocomposites
Open this publication in new window or tab >>Properties and performance of regenerated cellulose thermoset biocomposites
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biocomposites have been developed to address the sustainability issues of nonrenewableresource based materials. These composites are often produced by reinforcing natural fibres in petroleum based thermoset resins or thermoplastic polymers. Thermoplastic polymers from renewable resources are commercially available, whereas thermoset resins are predominantly derived from crude oil resources. Cellulose fibres have significant importance and potential for polymer reinforcement in lightweight composites. Natural fibres are chemically diverse and their properties vary largely which makes it difficult for them to be used in several applications. The natural fibre based products are limited by their characteristic odour emissions. These issues of natural fibres can be addressed by partly manmade fibres i.e. regenerated cellulose fibre which with little or no compromise in the environmental benefits of the natural fibres can be produced from biomass origin. Natural fibres and their composites have been observed and researched closely for many decades. Study of regenerated cellulose fibres and their composites is, on the other hand, relatively new. Regenerated cellulose fibres are prospective reinforcing material in the composite field due to their even quality and high purity. These fibres have good mechanical properties and also address the odour emission issue of the natural fibres. The development of biocomposites from regenerated cellulose fibre and thermoset resin synthesized from renewable resources has therefore been viewed with considerable interest.

This thesis describes the development of biocomposites from regenerated cellulose fibres (lyocell and viscose) and thermoset resins synthesized from renewable resources (soybean oil and lactic acid). The performance and the properties of the composites were evaluated. Chemical surface treatments, alkali and silane, were performed on the fibres in order to improve the performance of the composites. Hybrid composites were also produced by mixing of two types of reinforcement in order to complement one type of fibre with other. The developed composites were evaluated through mechanical, thermal, viscoelastic and morphological properties among others. The results showed that the regenerated cellulose fibre thermoset biocomposites have reasonably good properties. Fibres before and after treatment were studied in detail. The silane treatment on these fibres improved the mechanical properties of the composites as the silane molecules act as a link between the fibre and resin which gives the molecular continuity across the interface region of the composite.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2015. p. 49
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 57
Keywords
regenerated cellulose fibres, surface modification, alkali, silane, mechanical analysis, biocomposites, renewable resources
National Category
Environmental Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-26 (URN)978-91-87525-43-8 (ISBN)978-91-87525-44-5 (ISBN)
Public defence
2015-06-12, D207, University of Borås, Allégatan 1, Borås, 10:00 (English)
Opponent
Available from: 2015-05-19 Created: 2015-03-09 Last updated: 2015-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Ramamoorthy, S. K.Adekunle, K.Skrifvars, M.

Search in DiVA

By author/editor
Ramamoorthy, S. K.Adekunle, K.Skrifvars, M.
By organisation
School of Engineering
In the same journal
Journal of reinforced plastics and composites (Print)
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf