The mechanism of inducing a phase change from α-poly(vinylidene fluoride) (α-PVDF) to β-PVDF is addressed using molecular dynamics simulations based on a molecular mechanics force field. The effect of applying a strain to the α-PVDF crystal along the axis of the molecules is investigated, as well as poling the crystal before or after stretching. Rather large (at least 1010 V/m) electric fields that are perpendicular to the axis of the PVDF molecules are required to induce α- to β-PVDF phase change when no strain is applied to the α-PVDF crystal. However, at a strain of 1.0475 (i.e., when the crystal is stretched by 4.75%) α-PVDF changes to a β-PVDF like structure, where the β-PVDF molecules orientate anti-parallel relative to each other. Transformation of the anti-parallel β-PVDF to β-PVDF can be induced by poling (even at the lowest electric field of 105 V/m studied here) or by thermal annealing.