First generation bioethanol generated from feedstocks is a sustainable alternative to fossil fuels, and the demand for fuel ethanol has promoted studies on the use of the grain as feedstock. This thesis describes various process designs and the economic feasibility for producing the main product ethanol and other by-products such as Biogas and DDGS (Distillers Dried Grains with Solubles) from the grain. The techno-economic analysis was performed by the data provided by Agroetanol industry, located in Norrköping, Sweden. The key target of this simulation work was to evaluate the influence of several process designs and the main production factors on the ethanol production process, in terms of energy efficiency, ethanol production cost and plant profitability. The main aim of this work was to simulate the current industrial process and to develop novel alternative retrofits by integrating new technologies and for investigating the effects on the plant profitability. In the base case, the cost sensitivity analysis was carried out on the grain buying price, ethanol and DDGS selling price. Along with the cost sensitivity analysis, the capacity sensitivity analysis was performed on the base case model to check the influence of different capacities on the plant profitability. While coming to the study of developing alternative retrofits, the three retrofits were developed on the base case process and they are as following: Retrofit 1) modifying the distillation and dehydration section of the base case retrofit (current process in Agroetanol), Retrofit 2) checking the impact of ethanol concentration on technical and economic aspects of the plant and Retrofit 3) installing the biogas digester.The modelling effort resulted in developing the base case model with an ethanol production rate of 41,985 ton/ year. The capital cost of the base case process was calculated to be at 68.85 million USD and the aspen economic analyzer calculated the product value of the ethanol and DDGS as 0.87 USD/litre and 0.37 USD/kg, respectively. Through cost sensitivity analysis results, it is identified that the ethanol selling price and the grain buying price have significant effects on the plant economy and it is confirmed that they are the main factors playing on the plant profitability in the base case model.The results of the alternative retrofits clearly demonstrate the importance of higher ethanol tolerant strains in ethanol production, which showed a less payback period compared to the base case. The payback periods of all the cases are showing the following patterns from the least to the highest: Retrofit 2 (17%) > Base case > Retrofit 3 > Retrofit 2 (4%) > Retrofit 1.Further retrofitting analysis results also suggested that using the stillage for biogas production will help in reducing the energy costs of the plant. The energy consumption of all the retrofits in ascending manner is as follows: Retrofit 3 > Retrofit 2 (17%) > Base case > Retrofit 1 > Retrofit 2 (4%). The energy usage result comparison of all the cases shows that, in third retrofit the overall energy consumption is decreased by 40% than the base case model.