Simultaneous glucose and xylose uptake was investigated for ethanol prodn. using the simultaneous saccharification, filtration and fermn. (SSFF) process with pretreated wheat straw as a xylose-rich lignocellulosic biomass. A genetically engineered strain of Saccharomyces cerevisiae (T0936) with the ability to ferment xylose was used for the fermns. SSFF was compared with a conventional method of simultaneous saccharification and fermn. (SSF) for glucose and xylose uptake, ethanol prodn., and cell viability on 10% and 12% suspended solids (SS) basis. With 10% SS, an ethanol yield of 90% of the theor. level was obtained during SSFF with 80% xylose uptake while only 53% ethanol yield was obsd. during the SSF process. Increasing the solid load to 12% resulted in an ethanol yield of 77% of the theor. value and 36% xylose uptake during SSFF while only 27% ethanol yield and no xylose uptake was obsd. during the corresponding SSF process. The SSFF process preserved the viability of the genetically engineered yeast throughout the fermn., even when reused for 2 consecutive cultivations. The results show that the SSFF process does not only enhance effective cell performance but also facilitates simultaneous glucose and xylose utilization, which is important for broad range of biomass utilization for lignocellulosic ethanol prodn. [on SciFinder(R)]
CAPLUS AN 2015:583795(Journal; Online Computer File)