Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artificiell intelligens för mjukvaruutveckling: En studie om användning och kvalitet
2023 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Artificial intelligence for software development : A study on usage and quality (English)
Abstract [sv]

Studiens syfte är att bedöma till vilken utsträckning AI kan ersätta en människa i rollen som mjukvaruutvecklare utifrån ett kvalitativt perspektiv på kod. Detta görs genom att besvara forskningsfrågorna som lyder: “Hur använder mjukvaruutvecklare sig av generativ AI vid utvecklingsutmaningar?” och “Vad är mjukvaruutvecklares uppfattning om kvaliteten på autogenererad kod skapad av en generativ AI såsom Chat GPT?”. För att besvara frågorna har en kvalitativ metod applicerats. En litteraturundersökning startade studien och tillsammans med en ny modell som baseras på McCall quality model och Boehm quality model. Från detta har en intervjuguide skapats som används i semistrukturerade intervjuer genomförda med erfarna mjukvaruutvecklare. Resultatet visar att kod skapad av generativ AI är ett bra hjälpmedel och verktyg som kan effektivisera en mjukvaruutvecklare och att det används på det sättet idag. Däremot så visar resultaten också att koden som genereras av en generativ AI inte är tillräckligt bra och kan inte användas utan att förändringar eller åtgärder görs då det saknas kvalitet. Slutsatserna som dras är att mjukvaruutvecklare använder sig av generativ AI som ett hjälpmedel men att AI:n inte är kapabel att hantera en uppgift på egen hand, därav är det inget hot mot någon anställning för mjukvaruutvecklare. Framtida forskning bör göras på autogenererad kod. Fler verktyg bör undersökas för att utvidga kunskapen om dess kapacitet samt bör det undersökas vilken inverkan generativ AI kan ha på andra branscher.

Abstract [en]

The aim of this study, conducted and written in Swedish, is to assess the potential of replacing a human software developer with generative AI. The study evaluates the quality of code generated by a generative AI model, this is done by answering the following research questions: “How do software developers use generative AI for development challenges'' and “How do software developers perceive the quality of code autogenerated by a generative AI such as Chat GPT”. To answer the questions we employ a qualitative research method. The study began with a literature review and based our evaluation of software quality on a hybrid model that modifies and combines McCall quality model and Boehm software quality model. The literature review and the hybrid model was used as a base to shape an interview guide. The interview guide was used in semistructured interviews conducted with experienced software developers. The results suggest that autogenerated code from generative AI is a viable aid for software developers as it makes them more effective in a number of tasks. However, the results also show that the autogenerated AI code has insufficient quality as a complete solution, and therefore often requires further fine-tuning and improvements from software developers. From the results, we conclude that software developers do use generative AI as a tool while writing code. Generative AI enhances software developers effectiveness but the current state of generative AI cannot fully replace a human software developer hence it is not a threat to any employment. Future research should be conducted on auto generated code. Some more tools should be studied to broaden the knowledge on its capabilities as well as looking at the implications that generative AI have on other industries.

Place, publisher, year, edition, pages
2023.
Keywords [en]
Artificial intelligence, Generative AI, Chatbot, Clean code, Maintainability, Flexibility, Testability
Keywords [sv]
Artificiell intelligens, Generativ AI, Chatbot, Kvalitativ kod, Underhållbarhet, Flexibilitet, Testbarhet
National Category
Information Systems
Identifiers
URN: urn:nbn:se:hb:diva-31121OAI: oai:DiVA.org:hb-31121DiVA, id: diva2:1824209
Subject / course
Informatics
Available from: 2024-01-11 Created: 2024-01-04 Last updated: 2024-01-11Bibliographically approved

Open Access in DiVA

2023KANI11(8314 kB)290 downloads
File information
File name FULLTEXT01.pdfFile size 8314 kBChecksum SHA-512
d275029566b92f02bda41e62744d7a192835fcea61c59c20e761b1955db51e02e0b46391a9ee69eef82add98295addc0dfa027a44d394cfd85c02f0cc4f5fb12
Type fulltextMimetype application/pdf

Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 290 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 531 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf