Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI inom radiologi, nuläge och framtid
2023 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
AI in radiology, now and the future (English)
Abstract [sv]

Denna uppsats presenterar resultaten av en kvalitativ undersökning som syftar till att ge en djupare förståelse för användningen av AI inom radiologi, dess framtida påverkan på yrket och hur det används idag. Genom att genomföra tre intervjuer med personer som arbetar inom radiologi, har datainsamlingen fokuserat på att identifiera de positiva och negativa aspekterna av AI i radiologi, samt dess potentiella konsekvenser på yrket. Resultaten visar på en allmän acceptans för AI inom radiologi och dess förmåga att förbättra diagnostiska processer och effektivisera arbetet. Samtidigt finns det en viss oro för att AI kan ersätta människor och minska behovet av mänskliga bedömningar. Denna uppsats ger en grundläggande förståelse för hur AI används inom radiologi och dess möjliga framtida konsekvenser.

Abstract [en]

This essay presents the results of a qualitative study aimed at gaining a deeper understanding of the use of artificial intelligence (AI) in radiology, its potential impact on the profession and how it’s used today. By conducting three interviews with individuals working in radiology, data collection focused on identifying the positive and negative aspects of AI in radiology, as well as its potential consequences on the profession. The results show a general acceptance of AI in radiology and its ability to improve diagnostic processes and streamline work. At the same time, there is a certain concern that AI may replace humans and reduce the need for human judgments. This report provides a basic understanding of how AI is used in radiology and its possible future consequences.

Place, publisher, year, edition, pages
2023.
Keywords [en]
Artificial intelligence (AI), Computer Science (CS), Machine Learning (ML), Artificial Neural Network (ANN), Deep Learning (DL), Radiology, Computed Tomography (CT), Magnetic Resonance Imaging (MRI)
Keywords [sv]
Artificiell intelligens (AI), Computer Science (CS), Machine Learning (ML), Artificial Neural Network (ANN), Deep Learning (DL), Radiologi, Computed Tomography (CT), Magnetic Resonance Imaging (MRI)
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:hb:diva-31111OAI: oai:DiVA.org:hb-31111DiVA, id: diva2:1824089
Subject / course
Informatics
Available from: 2024-01-11 Created: 2024-01-04 Last updated: 2024-01-11Bibliographically approved

Open Access in DiVA

2023KANI05(451 kB)344 downloads
File information
File name FULLTEXT01.pdfFile size 451 kBChecksum SHA-512
31afc6ec7cf4c51b344704b0b2b0203901756cbf366c17d73043f024d6ee5318202df64cc0cd958879768247ffc3e6d76534000cd7c4f6b88b29ccf9cdda09da
Type fulltextMimetype application/pdf

Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 344 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf