In (Stanley, 1978), Stanley constructs an example of an Artinian Gorenstein (AG) ring A with non-unimodal H-vector (1,13,12,13,1). Migliore-Zanello show in (Migliore and Zanello, 2017) that for regularity r=4, Stanley's example has the smallest possible codimension c for an AG ring with non-unimodal H-vector.
The weak Lefschetz property (WLP) has been much studied for AG rings; it is easy to show that an AG ring with non-unimodal H-vector fails to have WLP. In codimension c=3 it is conjectured that all AG rings have WLP. For c=4, Gondim shows in (Gondim, 2017) that WLP always holds for r≤4 and gives a family where WLP fails for any r≥7, building on Ikeda's example (Ikeda, 1996) of failure for r=5. In this note we study the minimal free resolution of A and relation to Lefschetz properties (both weak and strong) and Jordan type for c=4 and r≤6.