Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Roughening of PET Meltspun Filament through Minor Phase Removal of Blend
University of Borås, Faculty of Textiles, Engineering and Business.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Superhydrophobic fabrics have gained a huge interest in the industries recently. New legislation pushes the industries to eliminate the use of fluorinated materials in the production of these type of fabrics. Hydrophobic and self-cleaning garments textiles can deliver stable water repellent properties without the need for fluorinated chemicals and reduce the consumption of detergents. New methods that could be implemented in current textile industry processes without major changes in instruments or materials is essential to move this industry to the next level. Filament development with the hydrophobic structure without coating could be strategic on one side and tricky on the other side. It has been proved that a stable hydrophobic self cleaning surface needs a hierarchical micro-nano structure to present sustainable properties. In this thesis, we used common materials in the textile industry for filament production which are polyethylene terephthalate (PET) and high molecular weight polystyrene (PS) and low molecular weight polystyrene (LMPS) to shape the microstructures on the surface of filaments. By adding the common compatibilizer polystyrene-co-maleic anhydride (PSMA) to the blend, PS in the matrix of PET could migrate to the surface. Even 1% wt. of PSMA boosted the migration of PS polymer droplets to the surface. The blend including compatibilizer was compounded, melt-spun into the monofilament, drawn, and annealed for various time durations in the furnace. Next, the filaments were immersed in tetrahydrofuran(THF) to remove the PS component obtaining the rough surface. We investigated the effect of mixture components content and different process parameters such as draw ratio and annealing time on hydrophobicity by the aid of statistical design. Applying the Wilhelmy method for contact angle measurement, we could achieve an advancing contact angle (ACA)of 114º and the average ACA of 96º by making micro-size structure on raw PET with an average ACA of 80º and the intrinsic contact angle of around 70º.

Place, publisher, year, edition, pages
2018.
Keywords [en]
Roughening, Phase induced morphology, PET/PS blend, Hydrophobicity, Drawing, Annealing
National Category
Polymer Chemistry Polymer Technologies
Identifiers
URN: urn:nbn:se:hb:diva-29132OAI: oai:DiVA.org:hb-29132DiVA, id: diva2:1719558
Supervisors
Examiners
Available from: 2023-01-05 Created: 2022-12-15 Last updated: 2023-01-05Bibliographically approved

Open Access in DiVA

fulltext(40 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 40 kBChecksum SHA-512
fbc637a868bbfdf0e30ba7b5806713ea1bc083fa4b46577e5167dac1c97444d007032a1a07411d194148cc68da2d98bdd7c82ddfa9b39f68a0cc170c71b39d42
Type fulltextMimetype application/pdf

By organisation
Faculty of Textiles, Engineering and Business
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1980 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf