The increase in the human life expectancy coupled with the rise in population has boosted the use of pharmaceuticals. These biologically active compounds do not fully metabolize by the human body and excreted out into the wastewater which often resistant to conventional wastewater treatment processes. Herein, this study presents the progress and prospects of catalytically active textiles-based heterogeneous bio-electro-Fenton reactor for effective removal of pharmaceutical residue from wastewater. The reactor consists of a bio-anode prepared by immobilized redox enzyme on synthetic nonwoven textiles and a cathode by zerovalent iron nanoparticles immobilized functional textiles has been extensively explored for removal of pharmaceuticals from simulated wastewater. The results of this current study will be of great importance as its expected to deliver the much-needed upgrade in the conventional wastewater treatment system with bio-based, sustainable, and textiles-based system.
Acknowledgment
The authors would like to thank Sparbanksstiftelsen Sjuhärad and the University of Borås for their financial and technical support for this project