In recent years, it has been recognized that the seismic wave equation solved with a finite-difference method in time causes a predictable and removable error through the use of so-called time-dispersion transforms. These transforms were thought not to apply to visco-elastic media. However, in this paper we demonstrate that the time-dispersion transforms remain applicable when the visco-elastic wave equation is solved with memory variables, as is commonly done. The crucial insight is that both the wave equation and the memory variables are computed with the same time-dispersion error. We show how the time-dispersion transforms can be implemented in, for example, MATLAB, and demonstrate the developed theory on a visco-elastic version of the Marmousi model. Then, the time-dispersion transforms allow computation of the visco-elastic wave equation with large steps in time without significant loss of accuracy, and without having to make any modifications to the model.