Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
There is a need for new sustainable textiles to reduce the problems related to the productionof current textiles, including the use of nonrenewable resources, shortages of cotton, and theuse of harmful chemicals. Bio-based materials developed from natural biopolymers areattracting increasing interest as sustainable alternatives to fossil-based materials. Thecultivation of filamentous fungi results in fungal biomass that is rich in biopolymers. In fungalbiorefineries, food waste can be valorized via fungal cultivation, resulting in a broad range ofvalue-added products.
In this study, filaments were designed from the cell wall material of filamentous fungi grownon bread waste and evaluated for application in medical textiles. The developed route forfilament production uses benign processes and reuses food waste. The fungal cell wall, isolatedfrom fungal biomass (mycelia), consists of a matrix of biopolymers, including chitin, chitosan,and glucan. The aim was to directly utilize the cell wall material for developing filamentswithout needing extensive purification of these biopolymers.
Fungal biomass was obtained by cultivating an edible filamentous fungus (Rhizopus delemar)with a cell wall rich in chitosan and chitin. Submerged cultivation using bread waste as asubstrate was demonstrated on multiple scales, from 0.2 L shake flasks to a 1.3 m3 bioreactor.First, a protein hydrolysate was recovered from the fungal biomass via mild enzymatictreatment. The protein hydrolysate exhibited potential as an emulsifier and foaming agent. Thenever-dried cell wall material was isolated using alkali treatment for filament production.Hydrogels formed from the cell wall material after the addition of lactic acid. Hydrogelformation was attributed to the protonation of the amino groups of chitosan present in the cellwall. The hydrogels were wet spun into monofilaments using ethanol as the coagulation agent.The fungal monofilaments are suggested as suitable candidates for applications in medicaltextiles owing to their biocompatibility with human fibroblast cells and their antibacterial andwound-healing properties. This method was also applied to another strain of ediblefilamentous fungi (Aspergillus oryzae), wherein the cell wall mainly comprises chitin andglucan. The cell wall material obtained from A. oryzae was subjected to deacetylation andfreeze–thaw pre-treatments to achieve gelation, and the formed hydrogels were successfullywet spun into monofilaments.
The work presented in this thesis introduces the potential of the valorization of bread wasteinto value-added products based on a biorefinery concept utilizing different edible fungalstrains. This process focuses on scalability and environmental benignity. This studycontributes to the development of novel biomaterials and fungal proteins obtained from fungalcell walls for application in medical textiles and food products, respectively.
Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2024
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 151
Keywords
Antibacterial, Ascomycetes, biocompatibility, chitin, chitosan, chitin–glucan, deacetylation, filamentous fungi, food waste, fungal textile, hydrogel, medical textile, monofilament, Mucoromycetes, submerged cultivation, wet spinning, wound healing
National Category
Other Industrial Biotechnology Polymer Chemistry Bioprocess Technology
Research subject
Resource Recovery; Resource Recovery
Identifiers
urn:nbn:se:hb:diva-31733 (URN)978-91-89833-48-7 (ISBN)978-91-89833-49-4 (ISBN)
Public defence
2024-06-14, C203, Allégatan 1, Borås, 10:00 (English)
Opponent
2024-05-212024-04-022024-05-23Bibliographically approved