Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview.
University of Borås, Faculty of Textiles, Engineering and Business. (Resursåtervinning)
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-7377-0765
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0003-4887-2433
University of Borås, Faculty of Textiles, Engineering and Business.
2020 (English)In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 298, article id 122393Article in journal (Refereed) Published
Sustainable development
According to the author(s), the content of this publication falls within the area of sustainable development.
Abstract [en]

The plastics market is dominated by fossil-based polymers, but their gradual replacement by bioplastics (e.g., polyhydroxyalkanoates) is occurring. However, recycling strategies need to be developed to truly unveil the impact of bioplastics on waste accumulation. This review provides a state of the art of recycling strategies investigated for polyhydroxyalkanoate-based polymers and proposes future research avenues. Research on mechanical and chemical recycling is dominated by the use of extrusion and pyrolysis, respectively, while that on biodegradation of polyhydroxyalkanoates is related to soil and aquatic samples, and to anaerobic digestion towards biogas production. Research gaps exist in the relationships between polymer composition and ease of use of all recycling strategies investigated. This is of utmost importance since it will influence the need for separation at the source. Therefore, research emphasis needs to be given to the area to follow the continuous improvement of the process economics towards widespread commercial production of polyhydroxyalkanoates.

Place, publisher, year, edition, pages
2020. Vol. 298, article id 122393
Keywords [en]
Biodegradation, Extraction methods, Polyhydroxyalkanoates, Recycling methods, Wastes
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-22508DOI: 10.1016/j.biortech.2019.122393ISI: 000505201600041PubMedID: 31757612Scopus ID: 2-s2.0-85075851984OAI: oai:DiVA.org:hb-22508DiVA, id: diva2:1386151
Available from: 2020-01-16 Created: 2020-01-16 Last updated: 2023-04-28Bibliographically approved
In thesis
1. Volatile Fatty Acids as a Key to Sustainability and Circularity in Polyhydroxyalkanoates Production
Open this publication in new window or tab >>Volatile Fatty Acids as a Key to Sustainability and Circularity in Polyhydroxyalkanoates Production
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The negative consequences of plastic pollution on both environmental and socio-economic aspects have motivated the development of sustainable and renewable materials to replace the petroleum-based plastic. Polyhydroxyalkanoates (PHAs), which are bioplastics, having an outstanding biodegradability and rather comparable thermal and mechanical properties, are potential alternatives for the replacement of conventional plastics. However, one of the hurdles on the way to PHA commercial production is the cost of conventional feedstock, which can constitute up to 50% of the production cost. In this regard, volatile fatty acids (VFAs) derived from acidogenic fermentation of organic waste can be a promising substrate to increase the cost-competitiveness of PHA production. Therefore, in this thesis, VFAs were utilized and developed to be a key carbon feedstock for the sustainable and economically feasible production of PHAs. The applicability of individual and mixed VFAs as potential substrates was initially investigated through the cultivation of two different PHA-bearing bacteria of Bacillus megaterium and Cupriavidus necator, providing an average PHA yield on biomass of 10 and 55%, respectively. Further thorough studies, in terms of VFAs loading and inhibition thresholds and operating parameters, were conducted to improve the conversion efficiency of VFAs by C. necator. Consequently, a biomass yield on VFAs of up to 82% was obtained, rendering a PHA accumulation of 1 g/L using actual waste derived VFA effluent. In addition, in order to tackle the inherent issue of low productivity in batch and/or fed-batch cultivations under high VFA containing feed, a novel approach of immersed membrane reactor (iMBR) was introduced and applied in this thesis. With the assistance of membrane filtration, the PHA production was conducted in semi-continuous mode (up to 128 h), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. The outcomes achieved, furthermore, were 32.1 and 28.5%, respectively, higher than that from a continuous stirred tank (CSTR), in which the cultivation was affected by the washout effect. Moreover, considering the insufficiency of the current recycling methods of PHA-based products in terms of resource recovery, a novel attempt of acidogenic fermentation has been conducted to valorize the PHA-based composites through conversion into precursor VFAs. Afterwards, the recovered VFAs could be recirculated into PHA production, fulfilling the concept of a circular bioeconomy.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2023
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 137
Keywords
bioplastics, food waste, polyhydroxyalkanoates, volatile fatty acids, immersed membrane bioreactor, acidogenic fermentation
National Category
Environmental Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-29578 (URN)978-91-89271-92-0 (ISBN)978-91-89271-93-7 (ISBN)
Public defence
2023-05-26, C203, Allégatan 1, Borås, 10:00 (English)
Opponent
Supervisors
Available from: 2023-05-04 Created: 2023-03-28 Last updated: 2023-04-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Vu, Hoang DanhÅkesson, DanTaherzadeh, Mohammad JFerreira, Jorge

Search in DiVA

By author/editor
Vu, Hoang DanhÅkesson, DanTaherzadeh, Mohammad JFerreira, Jorge
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Bioresource Technology
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 51718 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf