Conductive elastic fabrics are desirable in wearable electronics and related applications. Here, we report a highly elastic conductive polyamide/lycra knitted fabric using intrinsically conductive polymer poly (3, 4-ethylenedioxythiophene) (PEDOT) blended with polyelectrolyte poly (styrene sulfonate) (PSS) by easily scalable coating and immersion methods. We investigated the effects of these two methods of treatments on uniformity, electromechanical property, stretchability, and durability. Different grades of waterborne polyurethanes (PU) were employed in different concentrations to improve the coating and adhesion of the PEDOT:PSS on the fabric. The immersion method gave better uniform treatment, higher conductivity, and durability against stretching and cyclic stretching than the coating method. The surface resistance increased from ~1.7 and ~6.4 Ω/sq at 0% PU to ~3.7 and ~12.6 Ω/sq at 50% PU for immersion and coating methods, respectively. The treatment methods as well as the acidic PEDOT:PSS did not affect the mechanical properties of the fabric and the fabric showed high strain at break of ~650% and remain conductive until break. The resistance increased only by a small amount when samples were stretched for 10 cycles at 100% strain and the samples show good durability against 10 domestic laundry washing cycles.