Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Detailed Review of Artificial Intelligence Applied in the Fashion and Apparel Industry
University of Borås, Faculty of Textiles, Engineering and Business. Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France; College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China; Automatique, Génie informatique, Traitement du Signal et des Images, Université Lille Nord de France, F-59000 Lille, France.
University of Borås, Faculty of Textiles, Engineering and Business. Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France; College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China; Automatique, Génie informatique, Traitement du Signal et des Images, Université Lille Nord de France, F-59000 Lille, France.ORCID iD: 0000-0001-8337-251x
Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France.
Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France.
2019 (English)In: IEEE Access, E-ISSN 2169-3536Article in journal (Refereed) Published
Abstract [en]

The enormous impact of artificial intelligence has been realized in transforming the fashion and apparel industry in the past decades. However, the research in this domain is scattered and mainly focuses on one of the stages of the supply chain. Due to this, it is difficult to comprehend the work conducted in the distinct domain of the fashion and apparel industry. Therefore, this paper aims to study the impact and the significance of artificial intelligence in the fashion and apparel industry in the last decades throughout the supply chain. Following this objective, we performed a systematic literature review of research articles (journal and conference) associated with artificial intelligence in the fashion and apparel industry. Articles were retrieved from two popular databases ‘‘Scopus’’ and ‘‘Web of Science’’ and the article screening was completed in five phases resulting in 149 articles. This was followed by article categorization which was grounded on the proposed taxonomy and was completed in two steps. First, the research articles were categorized according to the artificial intelligence methods applied such as machine learning, expert systems, decision support system, optimization, and image recognition and computer vision. Second, the articles were categorized based on supply chain stages targeted such as design, fabric production, apparel production, and distribution. In addition, the supply chain stages were further classified based on business-to-business (B2B) and business-to-consumer (B2C) to give a broader outlook of the industry. As a result of the categorizations, research gaps were identified in the applications of AI techniques, at the supply chain stages and from a business (B2B/B2C) perspective. Based on these gaps, the future prospects of the AI in this domain are discussed. These can benefit the researchers in academics and industrial practitioners working in the domain of the fashion and apparel industry.

Place, publisher, year, edition, pages
2019.
Keywords [en]
Artificial intelligence, big data analytics, machine learning, expert systems, fashion and apparel industry
National Category
Computer and Information Sciences
Research subject
Business and IT
Identifiers
URN: urn:nbn:se:hb:diva-21847DOI: 10.1109/ACCESS.2019.2928979ISI: 000478676600101Scopus ID: 2-s2.0-85070237602OAI: oai:DiVA.org:hb-21847DiVA, id: diva2:1360491
Note

Author 1 and 2 are equal contributing authors.

Available from: 2019-10-14 Created: 2019-10-14 Last updated: 2021-09-24Bibliographically approved
In thesis
1. Big Data Management Using Artificial Intelligence in the Apparel Supply Chain: Opportunities and Challenges
Open this publication in new window or tab >>Big Data Management Using Artificial Intelligence in the Apparel Supply Chain: Opportunities and Challenges
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Big data management using artificial intelligence in the apparel supply chain:

Opportunities and Challenges

Over the past decade, the apparel industry has seen several applications of big data and artificial intelligence (AI) in dealing with various business problems. With the increase in competition and customer demands for the personalization of products and services which can enhance their brand experience and satisfaction, supply-chain managers in apparel firms are constantly looking for ways to improve their business strategies so as to bring speed and cost efficiency to their organizations. The big data management solutions presented in this thesis highlight opportunities for apparel firms to look into their supply chains and identify big data resources that may be valuable, rare, and inimitable, and to use them to create data-driven strategies and establish dynamic capabilities to sustain their businesses in an uncertain business environment. With the help of these data-driven strategies, apparel firms can produce garments smartly to provide customers with a product that closer meets their needs, and as such drive sustainable consumption and production practices.

In this context, this thesis aims to investigate whether apparel firms can improve their business operations by employing big data and AI, and in so doing, seek big data management opportunities using AI solutions. Firstly, the thesis identifies and classifies AI techniques that can be used at various stages of the supply chain to improve existing business operations. Secondly, the thesis presents product-related data to create a classification model and design rules that can create opportunities for providing personalized recommendations or customization, enabling better shopping experiences for customers. Thirdly, this thesis draws from the evidence in the industry and existing literature to make suggestions that may guide managers in developing data-driven strategies for improving customer satisfaction through personalized services. Finally, this thesis shows the effectiveness of data-driven analytical solutions in sustaining competitive advantage via the data and knowledge already present within the apparel supply chain. More importantly, this thesis also contributes to the field by identifying specific opportunities with big data management using AI solutions. These opportunities can be a starting point for other research in the field of technology and management.

Abstract [sv]

Big Data Management och användning av artificiell intelligens i klädförsörjningskedjan:

Möjligheter och utmaningar

Under det senaste decenniet har användning av big data och artificiell intelligens använts för att hantera olika affärsproblem inom klädindustrin. I takt med den ökade konkurrensen på marknaden och kundernas efterfrågan på mer individanpassade lösningar, letar klädföretag efter nya sätt att förbättra affärsstrategier så att de kan bli snabbare och mer kostnadseffektiva. Big data management ger möjligheter för klädföretag att få kontroll över sin leverantörskedja och identifiera big data-resurser som är värdefulla, sällsynta, svåra att kopiera och kan användas för att skapa datadrivna strategier samt förstärka dynamiska förmågor i en osäker miljö. Med hjälp av dessa datadrivna strategier kan klädföretag på ett smartare sätt producera kläder för att ge kunderna en produkt som är närmare deras behov, och som sådan, driva hållbar konsumtion och produktionsmetoder.

I den här kontexten undersöker avhandlingen fördelarna för klädföretag att använda big data och artificiell intelligens för att förbättra sin affärsverksamhet och samtidigt söka möjligheter med big data management med hjälp av AI-lösningar. Först identifierar och klassificerar avhandlingen AI-tekniker som kan användas i olika delar av leveranskedjan för att förbättra den befintliga affärsverksamheten. För det andra presenterar avhandlingen produktrelaterad data för att skapa en klassificeringsmodell och designregler som kan vara till gagn för att ge personliga rekommendationer eller kundanpassningar som möjliggör en bättre shoppingupplevelse. För det tredje tar den fram förslag baserat på bevis från branschen och befintlig litteratur, som kan vägleda chefer i att utveckla datadrivna strategier för att förbättra kundnöjdheten genom individanpassade tjänster. Denna avhandling visar att effektiviteten hos datadrivna analytiska lösningar via befintlig data och kunskap kan leda till konkurrensfördelar. Framför allt bidrar denna avhandling till fältet genom att identifiera specifika möjligheter med big data management med hjälp av AI-lösningar. Dessa möjligheter kan vara en utgångspunkt för andra forskningsarbeten inom teknik och management.

Abstract [fr]

La gestion du big data par l’intelligence artificielle dans la chaîne d'approvisionnement

de l'industrie textile : Opportunités et défis

L’industrie de l'habillement a bénéficié, au cours de la dernière décennie, de l'application de big data et de l'intelligence artificielle pour résoudre divers problèmes commerciaux. Face à la concurrence accrue sur le marché et aux attentes des clients en matière de personnalisation, ces industriels sont en permanence à la recherche des moyens d'améliorer leurs stratégies commerciales afin d'accroître leur rapidité et leur rentabilité. A cet égard, les solutions de gestion de big data offrent aux enseignes de la distribution textile la possibilité d'explorer leur chaîne d'approvisionnement et d'identifier les ressources de données importantes. Ces ressources précieuses, rares et inimitables permettent de créer des stratégies axées sur les données (data-driven) et d'établir des capacités dynamiques à maintenir dans un environnement commercial incertain. Grâce à ces stratégies data-driven, les enseignes de prêt-à-porter sont en mesure de confectionner des vêtements de façon intelligente afin de fournir à leurs clients un article adapté à leurs besoins et, par conséquent, d'adopter des pratiques de consommation et de production durables.

Dans ce contexte, la thèse étudie les avantages de l'utilisation de big data et de l'intelligence artificielle (IA) dans les entreprises de l'habillement, afin d'améliorer leurs opérations commerciales tout en recherchant des opportunités de gestion de big data à l'aide de solutions d'IA. Dans un premier temps, cette thèse identifie et classifie les techniques d'IA qui peuvent être utilisées à différents stades de la chaîne d'approvisionnement pour améliorer les opérations commerciales existantes. Dans un deuxième temps, des données relatives aux produits sont présentées afin de créer un modèle de classification et des règles de conception susceptibles de fournir des recommandations personnalisées ou une personnalisation permettant une meilleure expérience d'achat pour le client. Dans un troisième et dernier temps, la thèse s'appuie sur les évidences de l'industrie de l'habillement et la littérature existante pour suggérer des propositions qui peuvent guider les responsables dans le développement de stratégies data-driven pour améliorer la satisfaction du client par des services personnalisés. Enfin, cette thèse montre l'efficacité des solutions analytiques basées sur les données pour maintenir un avantage concurrentiel grâce aux données et aux connaissances déjà présentes dans une chaîne d'approvisionnement de l'habillement. Plus précisément, cette thèse contribue au domaine textile en identifiant des opportunités spécifiques de gestion de big data à l'aide de solutions  d'intelligence artificielle. Ces opportunités peuvent être une source de référence pour d'autres travaux de recherche dans le domaine de la technologie et de la gestion.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2020
Keywords
Big data management, artificial intelligence, apparel supply chain, personalized offerings, data-driven strategies, Gestion big data, intelligence artificielle, chaîne d'approvisionnement de l'habillement, personnalisation, stratégies basées sur les données (data-driven), Big data management, artificiell intelligens, klädförsörjningskedja, personifierade erbjudanden, data-drivna strategier
National Category
Business Administration
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-23771 (URN)978-91-88838-81-0 (ISBN)978-91-88838-82-7 (ISBN)
Public defence
2020-10-09, M202, 11:37 (English)
Opponent
Available from: 2020-09-18 Created: 2020-09-11 Last updated: 2020-09-16Bibliographically approved
2. Data-driven AI Techniques for Fashion and Apparel Retailing
Open this publication in new window or tab >>Data-driven AI Techniques for Fashion and Apparel Retailing
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Digitalisation allows companies to develop many new ways of interacting with customers and other stakeholders. These digital interactions typically generate data that can be stored and later processed for different objectives. Currently, the fashion and apparel industry is undergoing a disruptive transformation due to digitalisation, including a rapid increase in the generation of data in various parts of the supply chain. While most data may not be stored with data mining or other analyses in mind, collected data frequently contain very valuable information that can be exploited. Analytics, in particular the use of data-driven AI techniques, is therefore becoming a pervasive tool that is used for a large variety of purposes and in many different processes. While the popularity of Artificial Intelligence (AI) as an advanced tool for improved decision support is increasing, applications of AI within the fashion and apparel industry have historically been rather limited.

With this in mind, the overall purpose of this thesis is to, after presenting an overview of research on applications of data-driven AI in the fashion and apparel industry, demonstrate how various data sets and AI techniques can be utilised for improved decision support in different scenarios.

Whilst the thesis first investigates the impact of AI on different parts of the supply chain, the empirical work focuses on fashion and apparel retailing. Here, different AI techniques are explored in a set of case studies covering several applications in fashion and apparel retailing, thus showing the potential of data-driven AI for decision support in that domain.

One important learning outcome, found in several of the studies, is the need to combine several data sources and techniques in the projects. Another takeaway is the benefit of interpretable models, which allow for inspection and analysis of the discovered relationships. From an applied perspective, approaches like RFM modelling can be utilised as a pre-step to predict customer churn, add sentiment analysis to short-term sales forecasting and build campaign and simulation engines from historical data, which could potentially be used by many retailers.

In conclusion, this thesis has, mainly through a set of case studies addressing real-world problems and utilising real-world data sets, demonstrated how data-driven AI techniques can support and improve fashion and apparel retailers’ decision-making.

Abstract [sv]

Digitaliseringen möjliggör nya sätt för företag att interagera med kunder och andraintressenter. Dessa digitala interaktioner generar data som kan lagras och senare processerasför olika ändamål. Modeindustrin genomgår just nu en disruptiv transformation på grund avdigitaliseringen, vilket har lett till en snabb ökning av den mängd data som genereras i olikadelar av värdekedjan. Även om avsikten med merparten av den data som lagras inte är att denska nyttjas för data mining eller annan datadriven analys, så innehåller den potentielltvärdefull information som kan utnyttjas av företagen. Datadrivna analysmetoder, framför alltAI, har därför fått ett stort genomslag, och används nu för en mängd olika syften ochprocesser. Även om användandet av AI som verktyg för förbättrat beslutsstöd ökar, så haranvändningen inom modebranschen historiskt sett varit relativt begränsad.Med detta som bakgrund, är denna avhandlings övergripande syfte att presentera engenomgång av forskning kring applikationer av data-driven AI i modeindustrin samt att visahur olika datamängder och AI tekniker kan användas för att skapa förbättrat beslutstöd i ettantal scenarion.Även om avhandlingen börjar med en översikt över AI i olika delar av värdekedjan, så är detempiriska arbetet fokuserat på detaljhandeln inom modebranschen. Här utvecklas och prövasolika AI-tekniker i ett antal fallstudier som spänner över en mängd tillämpningar inommodehandeln.En viktig lärdom från flera av avhandlingens studier är behovet att kombinera olika typer avdatamängder och tekniker. En annan generell slutsats är fördelarna med tolkningsbaramodeller, vilka möjliggör granskning och analys av identifierade samband. Utifrån ett mertillämpat perspektiv bör vissa tillvägagångssätt, som till exempel att utnyttja RFM-analys vidchurn-prediktion, att berika försäljningsdata med sentimentanalys vid korttidsprognoser samtatt skapa ett simuleringsverktyg för kampanjer från historisk data, visa sig värdefulla föraktörer inom detaljhandeln. 

Abstract [fr]

La digitalisation offre aux entreprises la capacité de développer de multiples et nouvellesmodalités d'interaction avec les clients et les autres intervenants. Ces interactions numériséesengendrent typiquement des données qui peuvent être sauvegardées et traitées plus tard pourdivers objectifs. L'industrie de l'habillement subit actuellement une transformation disruptivedue à la digitalisation, notamment une augmentation rapide du volume de données généréespar les différentes parties de la chaîne d'approvisionnement. Tandis que la plupart des donnéesne sont pas nécessairement stockées dans l'optique de l'exploration des données ou autresformes d’analyse, les données collectées contiennent fréquemment des informations trèsintéressantes qui peuvent être exploitées. Ainsi, les outils d'analyse, en particulier lestechniques d'IA axées sur les données, deviennent omniprésents et sont utilisés à des fins trèsvariées et dans de nombreux processus différents. Bien que la popularité de l'IA en tantqu'outil performant pour une meilleure aide à la décision ne cesse de croître, les applicationsde l'IA dans le secteur de la mode et de l'habillement restent relativement limitées. Dans cetteoptique, l'objectif général de cette thèse consiste, après avoir donné un aperçu général desapplications de l'IA basée sur les données dans le secteur de la mode et de l'habillement, àdémontrer la possibilité d'utiliser divers ensembles de données et techniques d'IA pouraméliorer l'aide à la décision dans le cadre de divers scénarios.Cette thèse examine initialement l'impact de l'IA sur différentes parties de la chaîned'approvisionnement, le travail empirique se concentre sur le secteur de la mode et del'habillement. Différentes techniques d'IA sont alors explorées dans une série d'études de cascouvrant plusieurs applications dans ce secteur, révélant ainsi le potentiel de mise en œuvre del'IA basée sur les données pour la prise de décision.L'un des acquis importants tiré de diverses études est la combinaison de multiples sources dedonnées et de techniques dans les projets. Un autre constat général est l'avantage des modèlesinterprétables, permettant l'inspection et l'analyse des corrélations trouvées. Sur le planpratique, certaines approches, comme la prédiction du comportement de désabonnement desclients, l'ajout de l'analyse des sentiments aux prévisions de ventes à court terme et laconstruction d'un moteur de simulation et de publicité à partir de données historiques,pourraient être utilisées par de nombreuses enseignes de prêt-à-porter.En guise de conclusion, la présente thèse a démontré, principalement par le biais d'une séried'études de cas abordant des problèmes du quotidien et utilisant des bases de données réelles,que les techniques d'IA axées sur les données peuvent soutenir et améliorer la prise dedécision du secteur de la mode et de l'habillement

Abstract [zh]

数字化技术能够为服装公司提供了多种新方式与客户和其他利益相关者进行互动。这些数字交互通常会产生的数据,可以将这些数据进行存储和处理以实现不同的目标。目前,时装及成衣业正经历数字化技术带来的颠覆性转变,其中包括在供应链各环节中生成的数据量急剧增加。尽管大部分数据可能不是为了数据挖掘或其他分析而进行存储的,但通常收集获得的数据中包含可以利用的、非常有价值的信息。各种算法,尤其是使用数据驱动的人工智能技术的算法,正在成为一种普遍应用的工具,正在用于各种各样场合和许多不同过程。虽然人工智能作为改善决策支持的先进工具越来越受欢迎,但人工智能在时装和服装业的应用历来相当有限。本论文的总体目标是在有关数据驱动人工智能在时装和服装行业的应用研究成果基础上,分析利用各种数据集和人工智能技术针对不同情景下的优化提供决策支持。本文首先研究了人工智能对供应链不同环节的影响作用,针对服装和服装零售业进行实证研究工作。对人工智能技术在一系列案例进行分析研究,这些案例研究涵盖了时装和服装零售领域的不同应用场景,从而证实了利用数据驱动的人工智能在该领域进行决策支持的应用潜力。本研究的重要成果之一就是从几项相关案例分析中发现需要结合多个数据来源和多项技术来进行项目研究。另外,研究结果证实了解释模型的优点,能够通过检查和分析发现相互之间的关系。从应用的角度来看,本研究提出的一些方法,例如预测客户流失、在短期销售预测中加入情绪分析、以及根据历史数据建立活动和模拟引擎,可以满足于许多零售商的使用需求。总之,本研究主要通过针对一系列现实问题的案例研究,提出解决方案,并利用真实的数据集合,论证了数据驱动的人工智能技术在支持和优化服装零售商决策方面的应用。

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2021
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 125
Keywords
Digitalization, artificial intelligence, fashion and apparel industry, churn prediction, sales forecasting, campaign analysis, data driven AI decision-making, 数字化,人工智能,服装产业,客户流失预测,销售预测,竞争分析,数据驱动的人 工智能决策, Digitalisation, intelligence artificielle IA, industrie de la mode et de l'habillement, prédiction de désabonnement, prévision des ventes, analyse des promotions, Prise de décision par IA axée sur les données, Digitalisering, Artificiell intelligens, Modeindustrin, Churnprediktion, Försäljningsprognoser, Kampanjanalys, Datadriven AI, Beslutsstöd
National Category
Business Administration Computer Sciences
Research subject
Business and IT; Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-26478 (URN)978-91-89271-44-9 (ISBN)978-91-89271-45-6 (ISBN)
Public defence
2021-10-15, M404, Zoom, 10:00 (English)
Opponent
Supervisors
Projects
SMDTex
Available from: 2021-09-24 Created: 2021-09-21 Last updated: 2021-11-15Bibliographically approved

Open Access in DiVA

fulltext(46759 kB)2507 downloads
File information
File name FULLTEXT01.pdfFile size 46759 kBChecksum SHA-512
262d8060d29d026f2605d8fa4060e1acb9f9da4b8a3d50fac9c4296893e7544d55b54780a04f2bb1af6e41b3069026c360d44423bfa841f85fe49a85c39d95c2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Giri, ChandadeviJain, Sheenam

Search in DiVA

By author/editor
Giri, ChandadeviJain, Sheenam
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
IEEE Access
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2511 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1728 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf